

FINAL JEE-MAIN EXAMINATION - MARCH, 2021

(Held On Thursday 18th March, 2021) TIME: 3:00 PM to 6:00 PM

CHEMISTRY

TEST PAPER WITH ANSWER & SOLUTION

SECTION-A

- 1. The oxidation states of nitrogen in NO, NO₂, N_2O and NO_3^- are in the order of :
 - (1) $NO_3^- > NO_2 > NO > N_2O$
 - (2) $NO_2 > NO_3^- > NO > N_2O$
 - (3) $N_2O > NO_2 > NO > NO_3$
 - (4) $NO > NO_2 > N_2O > NO_3^-$

Official Ans. by NTA (1)

- **Sol.** The oxidation states of Nitrogen in following molecules are as follows
 - $NO_3^- \rightarrow +5$
 - $NO_2 \rightarrow +4$
 - $NO \rightarrow +2$
 - $N_2O \rightarrow +1$
- 2. In basic medium, H₂O₂ exhibits which of the following reactions?
 - (A) $Mn^{2+} \rightarrow Mn^{4+}$
 - (B) $I_2 \rightarrow I^-$
 - (C) PbS \rightarrow PbSO₄

Choose the most appropriate answer from the options given below:

- (1) (A), (C) only
- (2) (A) only
- (3) (B) only
- (4) (A), (B) only

Official Ans. by NTA (4)

- **Sol.** In basic medium, oxidising action of H_2O_2 . $Mn^{2+} + H_2O_2 \rightarrow Mn^{+4} + 2OH^-$ In basic medium, reducing action of H_2O_2 $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$ In acidic medium, oxidising action of H_2O_2 . $PbS(s) + 4H_2O_2(aq) \rightarrow PbSO_4(s) + 4H_2O(\ell)$ Hence correct option (4)
- **3.** In the reaction of hypobromite with amide, the carbonyl carbon is lost as:
 - (1) CO_3^{2-}
 - $(2) HCO_3^-$
 - (3) CO₂
 - (4) CO
 - Official Ans. by NTA (1)

Sol. $\begin{array}{c} R-C-NH_2+Br_2+4NaOH \\ \parallel \\ O \end{array}$

 $R-NH_2 + Na_2CO_3 + 2NaBr + 2H_2O \leftarrow$ **Mechanism**

 $R-C-N \xrightarrow{H} \xrightarrow{OH} R-C-NH + Br \xrightarrow{Br} Ar \xrightarrow{OH} Br \xrightarrow{OH} Ar \xrightarrow{OH} Ar$

 $R - N \neq C = O \xrightarrow{H_2O} R - NH_2 + Na_2CO_3$ $H \neq OH \qquad or$ $H \neq OH \qquad OH \qquad CO^{2\Theta}$

- 4. The oxide that shows magnetic property is:
 - (1) SiO₂
- $(2) \text{ Mn}_3\text{O}_4$
- (3) Na₂O
- (4) MgO

Official Ans. by NTA (2)

- **Sol.** Mn₂O₄ shows magnetic properties.
- **5.** Main Products formed during a reaction of 1-methoxy naphthalene with hydroiodic acid are:

(1) and CH₃OH

(2) OH and CH_3I

(4) and CH₃I

Official Ans. by NTA (2)

Final JEE-Main Exam March, 2021/18-03-2021/Evening Session

Sol.
$$O - CH_3$$
 OH $O - CH_3 - I$ $O - CH_3 - I$

$$O - CH_{3}$$

$$H^{\oplus}$$

$$O - CH_{3}$$

$$I^{\oplus}$$

$$O - CH_{3}$$

- **6.** Deficiency of vitamin K causes :
 - (1) Increase in blood clotting time
 - (2) Increase in fragility of RBC's
 - (3) Cheilosis
 - (4) Decrease in blood clotting time

Official Ans. by NTA (1)

Sol. Due to deficiency of Vitmain K causes increases in blood clotting time.

Note: Vitamin K related to blood factor.

- 7. An organic compound "A" on treatment with benzene sulphonyl chloride gives compound B. B is soluble in dil. NaOH solution. Compound A is:
 - (1) $C_6H_5-N-(CH_3)_2$
- $(2) C_6H_5-NHCH_2CH_3$
- (3) C₆H₅-CH₂ NHCH₃ (4) C₆H₅-CH-NH₂ CH₃

Official Ans. by NTA (4)

Sol. Hinsberg reagent (Benzene sulphonyl chloride) gives reaction product with 1° amine and it is soluble in dil. NaOH.

$$R - \dot{N}H_{2} + \dot{C}l - \dot{S}l - \dot{O}l - \dot{O}$$

- 8. The first ionization energy of magnesium is smaller as compared to that of elements X and Y, but higher than that of Z. the elements X, Y and Z, respectively, are:
 - (1) chlorine, lithium and sodium
 - (2) argon, lithium and sodium
 - (3) argon, chlorine and sodium
 - (4) neon, sodium and chlorine

Official Ans. by NTA (3)

- Sol. The 1st IE order of 3rd period is
 Na < Al < Mg < Si < S < P < Cl < Ar
 X & Y are Ar & Cl
 Z is sodium (Na).
- 9. The secondary valency and the number of hydrogen bonded water molecule(s) in CuSO₄·5H₂O, respectively, are:
 - (1) 6 and 4
- (2) 4 and 1
- (3) 6 and 5
- (4) 5 and 1

Official Ans. by NTA (2)

> Hydrogen bonded water molecule = 1 Secondary valency = 4

10. Given below are two statements:

Statement I: Bohr's theory accounts for the stability and line spectrum of Li⁺ ion.

Statement II: Bohr's theory was unable to explain the splitting of spectral lines in the presence of a magnetic field.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both statement I and statement II are true.
- (2) Statement I is false but statement II is true.
- (3) Both statement I and statement II are false.
- (4) Statement I is true but statement II is false.

Official Ans. by NTA (2)

Sol. Statement-I is false since Bohr's theory accounts for the stability and spectrum of single electronic species (eg : He⁺, Li²⁺ etc) Statement II is true.

Consider the given reaction, percentage yield of:

- (1) C > A > B
- (2) B > C > A
- (3) A > C > B
- (4) C > B > A

Official Ans. by NTA (4)

Sol.
$$\frac{\text{NH}_2}{\text{HNO}_3 + \text{H}_2 \text{SO}_4}$$
Aniline

$$NH_{2}$$
 NH_{2}
 NH_{2}
 NH_{2}
 NH_{2}
 NH_{2}
 NH_{2}
 NO_{2}
 NO_{2}
 NO_{2}
 NO_{2}
 NO_{2}
 NO_{2}
 NO_{2}
 NO_{2}
 NO_{2}
 NO_{3}
 $NO_{47\%}$
 $NO_{47\%}$
 $NO_{51\%}$

% yield order \Rightarrow C > B > A

- The charges on the colloidal CdS sol and TiO₂ **12.** sol are, respectively:
 - (1) positive and positive
 - (2) positive and negative
 - (3) negative and negative
 - (4) negative and positive

Official Ans. by NTA (4)

Sol. CdS sol \rightarrow -ve sol TiO, sol \rightarrow +ve sol

13. Match List - I with List - II:

List - I

List - II

(Class of Chemicals)

(Example)

(a) Antifertility drug

(i) Meprobamate

(b) Antibiotic

- (ii) Alitame
- (c) Tranquilizer
- (iii) Norethindrone
- (d) Artificial Sweetener (iv) Salvarsan
- (1) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (2) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
- (3) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- (4) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)

Official Ans. by NTA (3)

- Sol. (A) Antifertility drug \rightarrow (iii) Nor ethindrone
 - (B) Antibiotic \rightarrow (iv) Salvarsan
 - (C) Tranquilizer \rightarrow (i) Meprobamate
 - (D) Artificial sweetener \rightarrow (ii) Alitame

Ans. A-iii, B-iv, C-i, D-ii

14.
$$_{2}$$
 $\xrightarrow{\text{dil.NaOH}}$ "X" $\xrightarrow{\text{H}^{+}, \text{ Heat}}$ "Y"

Consider the above reaction, the product 'X' and 'Y' respectively are:

Official Ans. by NTA (3)

Sol.
$$H \xrightarrow{OH} H_2O$$

$$H_2O$$

$$(Y)$$

$$(X)$$

Final JEE-Main Exam March, 2021/18-03-2021/Evening Session

15. Match list-I with list-II:

List-II List-II

- (a) Be (i) Treatment of cancer
- (b) Mg (ii) Extraction of metals
- (c) Ca (iii) Incendiary bombs and signals
- (d) Ra (iv) Windows of X-ray tubes
 - (v) Bearings for motor engines.

Choose the most appropriate answer the option given below:

- (1) a-iv, b-iii, c-i, d-ii
- (2) a-iv, b-iii, c-ii, d-i
- (3) a-iii, b-iv, c-v, d-ii
- (4) a-iii, b-iv, c-ii, d-v

Official Ans. by NTA (2)

- **Sol.** (a) Be \rightarrow it is used in the Windows of X-ray tubes
 - (b) Mg \rightarrow it is used in the Incendiary bombs and signals
 - (c) $Ca \rightarrow it$ is used in the Extraction of metals
 - (d) Ra \rightarrow it is used in the Treatment of cancer
- **16.** Given below are two statements:

Statement I: C₂H₅OH and AgCN both can generate nucleophile.

Statement II: KCN and AgCN both will generate nitrile nucleophile with all reaction conditions.

Choose the most appropriate option:

- (1) Statement I is true but statement II is false
- (2) Both statement I and statement II are true
- (3) Statement I is false but statement II is true
- (4) Both statement I and statement II are false

Official Ans. by NTA (1)

17. Given below are two statements:

Statement I : Non-biodegradable wastes are generated by the thermal power plants.

Statement II : Bio-degradable detergents leads to eutrophication.

In the light of the above statements, choose the most appropriate answer from the option given below:

- (1) Both statement I and statement II are false
- (2) Statement I is true but statement II is false
- (3) Statement I is false but statement II is true
- (4) Both statement I and statement II are true.

Official Ans. by NTA (4)

- **Sol.** Non-biodegradable wastes are generated by the thermal power plants which produces fly ash. Detergents which are biodegradable causes problem called eutrophication which kills animal life by deprieving it of oxygen.
- **18.** Match list-I with list-II:

List-II List-II

- (a) Mercury (i) Vapour phase refining
- (b) Copper (ii) Distillation refining
- (c) Silicon (iii) Electrolytic refining
- (d) Nickel (iv) Zone refining

Choose the most appropriate answer from the option given below:

- (1) a-i, b-iv, c-ii, d-iii (2) a-ii, b-iii, c-i, d-iv
- (3) a-ii, b-iii, c-iv, d-i (4) a-ii, b-iv, c-iii, d-i

Official Ans. by NTA (3)

- **Sol.** (a) Mercury \rightarrow Distillation refining
 - (b) Copper \rightarrow Electrolytic refining
 - (c) Silicon \rightarrow Zone refining
 - (d) Nickel \rightarrow Vapour phase refining
- 19. In the following molecules,

Hybridisation of carbon a, b and c respectively

- (1) sp³, sp, sp
- (2) sp^3 , sp^2 , sp
- $(3) sp^3, sp^2, sp^2$
- $(4) \text{ sp}^3, \text{ sp, sp}^2$

Official Ans. by NTA (3)

Sol. $H_3^{a(sp^2)} C = C - O - C + H$

20. A hard substance melts at high temperature and is an insulator in both solid and in molten state.

This solid is most likely to be a / an:

- (1) Ionic solid
- (2) Molecular solid
- (3) Metallic solid
- (4) Covalent solid

Official Ans. by NTA (4)

Sol. Covalent or network solid have very high melting point and they are insulators in their solid and molten form.

SECTION-B

1. A reaction has a half life of 1 min. The time required for 99.9% completion of the reaction is ____ min. (Round off to the Nearest integer)

[Use : $\ln 2 = 0.69$, $\ln 10 = 2.3$]

Official Ans. by NTA (10)

Sol.
$$\frac{t_{99.9\%}}{t_{50\%}} = \frac{\frac{1}{K} \ln \frac{100}{0.1}}{\frac{1}{K} \ln 2}$$
$$= \frac{\ln 1000}{\ln 2} \times t_{50\%}$$

$$=\frac{3\ln 10}{\ln 2} \times 1$$

$$=\frac{3\times2.3}{0.69}=10$$

2. The molar conductivities at infinite dilution of barium chloride, sulphuric arid and hydrochloric acid are 280, 860 and 426 Scm² mol⁻¹ respectively. The molar conductivity at infinite dilution of barium sulphate is

S cm² mol⁻¹(Round off to the Nearest Integer).

Official Ans. by NTA (288)

Sol. From Kohlrausch's law

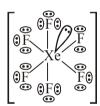
$$\begin{split} \Lambda_{m}^{\infty}(BaSO_{4}) &= \lambda_{m}^{\infty}(Ba^{2+}) + \lambda_{m}^{\infty}(SO_{4}^{2-}) \\ \Lambda_{m}^{\infty}(BaSO_{4}) &= \Lambda_{m}^{\infty}(BaCl_{2}) + \Lambda_{m}^{\infty}(H_{2}SO_{4}) \\ &-2 \Lambda_{m}^{\infty}(HCl) \\ &= 280 + 860 - 2 (426) \\ &= 288 \ Scm^{2}mol^{-1} \end{split}$$

3. The number of species below that have two lone pairs of electrons in their central atom is ____(Round off to the Nearest integer)

SF₄, BF₄⁻, CIF₃, AsF₃, PCl₅, BrF₅, XeF₄, SF₆

Official Ans. by NTA (2)

Sol.
$$SF_4 = \bigcirc S \downarrow F F$$
, $BF_4 = \bigcirc F \downarrow F F$
 $ClF_3 = \bigcirc Cl - F F$, $AsF_3 = \bigcirc F \downarrow F F$
 $PCl_5 = Cl - P \downarrow Cl$, $BrF_5 = \bigcirc F \downarrow F F$


$$XeF_4 = F Xe F_5$$
, $SF_6 = F F_F$

Two l.p. on central atom is = ClF_3 , XeF_4

4. A xenon compound 'A' upon partial hydrolysis gives XeO₂F₂. The number of lone pair of electrons present in compound A is _____(Round off to the Nearest integer)

Official Ans. by NTA (19)

Sol. $XeF_6 + 2H_2O \longrightarrow XeO_2F_2 + 4HF$ (A) (Limited water) Structure of 'A'

Total l.p. on (A) = 19

5. The gas phase reaction

$$2A(g) \rightleftharpoons A_2(g)$$

at 400 K has $\Delta G^{\circ} = +25.2$ kJ mol⁻¹.
The equilibrium constant K_C for this reaction is $\underline{\hspace{1cm}} \times 10^{-2}$. (Round off to the Nearest integer)
[Use: R = 8.3 J mol⁻¹K⁻¹, ln 10 = 2.3 log₁₀ 2 = 0.30, 1 atm = 1 bar]
[antilog (-0.3) = 0.501]

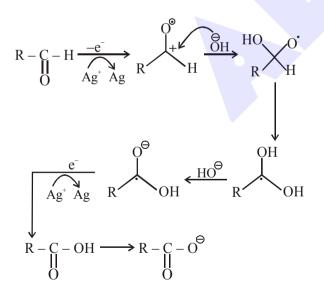
Final JEE-Main Exam March, 2021/18-03-2021/Evening Session

Official Ans. by NTA (166) Official Ans. by ALLEN (2)

Sol. Using formula

$$\Delta_{\rm r} {\rm G}^0 = -{\rm RT ln K_p}$$

 $25200 = -2.3 \times 8.3 \times 400 \, \log({\rm K_p})$
 ${\rm K_p} = 10^{-3.3} = 10^{-3} \times 0.501$
 $= 5.01 \times 10^{-4} \, {\rm Bar}^{-1}$
 $= 5.01 \times 10^{-9} \, {\rm Pa}^{-1}$


$$= \frac{K_{\rm C}}{8.3 \times 400}$$

$$K_C = 1.66 \times 10^{-5} \text{ m}^3/\text{mole}$$

= 1.66 × 10⁻² L/mol
Ans = 2

6. In Tollen's test for aldehyde, the overall number of electron(s) transferred to the Tollen's reagent formula [Ag(NH₃)₂]⁺ per aldehyde group to form silver mirror is ______.(Round off to the Nearest integer)

Official Ans. by NTA (2)

Sol.
$$AgNO_3 + NaOH \rightarrow AgOH + NaNO_3$$

 $2AgOH \rightarrow Ag_2O + H_2O$
 $Ag_2O + 4NH_3 + H_2O \rightarrow 2Ag(NH_3)_2^+ + 2OH$

Total 2e transfer to Tollen's reagent

7. The solubility of $CdSO_4$ in water is 8.0×10^{-4} mol L^{-1} . Its solubility in 0.01 M H_2SO_4 solution is _____ \times 10⁻⁶ mol L^{-1} . (Round off to the Nearest integer) (Assume that solubility is much less than 0.01 M)

Official Ans. by NTA (64)

Sol. In pure water,

$$K_{sp} = S^2 = (8 \times 10^{-4})^2$$

 $= 64 \times 10^{-8}$
In 0.01 M H₂SO₄
H₂SO_{4(aq)} $\rightarrow 2H^+_{(aq)} + SO_4^{2-}(aq.)$
0.02 0.01
BaSO_{4(s)} $\Longrightarrow Ba^{2+}_{(aq.)} + SO_4^{2-}(aq.)$
 x x $(x + 0.01)$
 $K_{sp} = x (x + 0.01)$
 $= 64 \times 10^{-8}$
 $x + 0.01 \cong 0.01$ M
So, $x (0.01) = 64 \times 10^{-8}$
 $x = 64 \times 10^{-6}$ M

8. A solute a dimerizes in water. The boiling point of a 2 molar solution of A is 100.52°C. The percentage association of A is.

(Round off to the Nearest integer)

[Use : K_b for water = 0.52 K kg mol⁻¹

Boiling point of water = 100° C

Official Ans. by NTA (50)
Official Ans. by ALLEN (100)

Sol.
$$\Delta T_b = T_b - T_b^0$$

 $100.52 - 100$
 $= 0.52^{\circ}C$
 $i = \left(1 - \frac{\alpha}{2}\right)$
 $\therefore \Delta T_b = i K_b \times m$
 $0.52 = \left(1 - \frac{\alpha}{2}\right) \times 0.52 \times 2$
 $\alpha = 1$
So, percentage association = 100%.

= 77.61%

10.0 ml of Na₂CO₃ solution is titrated against 0.2
 M HCl solution. The following titre values were obtained in 5 readings.

4.8 ml, 4.9 ml, 5.0 ml, 5.0 ml and 5.0 ml

Based on these readings, and convention of titrimetric estimation of concentration of Na₂CO₃ solution is mM.

(Round off to the Nearest integer)

Official Ans. by NTA (50)

Sol. Most precise volume of HCl = 5 ml at equivalence point Meq. of Na_2CO_3 = meq. of HCl. Let molarity of $Na2CO_3$ solution = M, then $M \times 10 \times 2 = 0.2 \times 5 \times 1$ M = 0.05 mol / L = 0.05×1000 = 50 mM

10.
$$+ Br_2 \xrightarrow{FeBr_3} + HBr$$

Consider the above reaction where 6.1 g of benzoic acid is used to get 7.8 g of m-bromo benzoic acid. The percentage yield of the product is____.

(Round off to the Nearest integer)

[Given: Atomic masses: C = 12.0u, H: 1.0u,

O: 16.0u, Br = 80.0u]

Official Ans. by NTA (78)

Sol. Moles of Benzoic acid = $\frac{6.1}{122}$ = moles of m-bromobenzoic acid So, weight of m-bromobenzoic acid = $\frac{6.1}{122} \times 201 \text{gm}$ = 10.05 gm % yield = $\frac{\text{Actual weight}}{\text{Theoretical weight}} \times 100$ = $\frac{7.8}{10.05} \times 100$