JEE (Main) 2020

COMPUTER BASED TEST (CBT)
Questions & Solutions

Date: 02 September, 2020 (SHIFT-2) | TIME: (03.00 p.m. to 06.00 p.m)
Duration: 3 Hours | Max. Marks: 300

SUBJECT: PHYSICS
Many Dreamers... Many Achievers...

ADMISSION OPEN (2020-21)

For Classroom Programs*

TARGET
JEE (Main+Advanced) 2021
COURSE
VIJAY

TARGET
JEE (Main) 2021
COURSE
AJAY

TARGET
JEE (Main+Advanced) 2021
COURSE
iVISHESH

Scholarship upto 90% on JEE (Main) 2020 %ile Score

Digital Program

Salient features

Live Interactive Classes & Recorded Lectures
Online Study Material & DPPs (Daily Practice Problems)
Discussion & Doubt Clearing Classes (Every week for each subject)
CST - Computer Based Test & Performance Analysis
Discussion Forum for Doubt Clearing & Additional Learning

*Presently classes would be offered Online and Offline classes would resume as per Government Guidelines.

Toll Free: 1800 258 5555 | Visit us: www.resonance.ac.in
PART : PHYSICS

Single Choice Type (एकल विकल्पीय प्रश्न)

This section contains 20 Single choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which Only One is correct.

1. Two uniform circular discs are rotating independently in the same direction around their common axis passing through their centres. The moment of inertia and angular velocity of the first disc are 0.1 kg\(\cdot\)m\(^2\) and 10 rad s\(^{-1}\) respectively while those for the second one are 0.2 kg\(\cdot\)m\(^2\) and 5 rad s\(^{-1}\) respectively. At some instant they get stuck together and start rotating as a single system about their common axis with some angular speed. The kinetic energy of the combined system is:

 (1) \(\frac{20}{3}\) J
 (2) \(\frac{5}{3}\) J
 (3) \(\frac{10}{3}\) J
 (4) \(\frac{2}{3}\) J

Ans. (1)

Sol.

\[\omega_1 = \frac{l_1\omega_1}{l_1 + l_2}, \quad \omega_2 = \frac{l_2\omega_2}{l_1 + l_2} \]

\[\omega = \omega_1 + \omega_2 = \frac{0.1 \times 10 + 0.2 \times 5}{0.1 + 0.2} = \frac{20}{3} \]

Final K.E.

\[K_f = \frac{1}{2} I_1\omega_1^2 + \frac{1}{2} I_2\omega_2^2 \]

\[= \frac{1}{2}(0.1 + 0.2) \times \left(\frac{20}{3} \right)^2 \Rightarrow K_f = \frac{20}{3} \]

2. When the temperature of metal wire is increased from 0ºC to 10ºC, its length increases by 0.02%. The percentage change in its mass density will be close to:

 (1) 0.8
 (2) 0.008
 (3) 2.3
 (4) 0.06

Ans. (4)

Sol.

\[\frac{\Delta \ell}{\ell} = \frac{T}{\ell} \Delta T \]

\[\alpha = \frac{\Delta V}{V} = \frac{0.02}{100 \times 10}; \quad \alpha = 2 \times 10^{-5} \]

\[\gamma = 6 \times 10^{-5} \]

\[\frac{\Delta V}{V} = \gamma \times \Delta T; \quad \frac{\Delta V}{V} \times 100 = (6 \times 10^{-5} \times 10 \times 100) = 6 \times 10^{-2} \]

Volume increase by 0.06% therefore density decrease by 0.06%.

3. A capillary tube made of glass of radius 0.15 mm is dipped vertically in a beaker filled with methylene iodide (surface tension = 0.05 Nm\(^{-1}\), density = 667 kg m\(^{-3}\)) which rises to height \(h\) in the tube. It is observed that the two tangents drawn from observed that the two tangents drawn from liquid-glass interfaces (from opp. sides of the capillary) make an angle of 60º with one another. Then \(h\) is close to (\(g = 10\) ms\(^{-2}\))

 (1) 0.087 m
 (2) 0.137 m
 (3) 0.172 m
 (4) 0.049 m

Ans. (1)
The figure shows a region of length \(\ell \) with a uniform magnetic field of 0.3 T in it and a proton entering the region with velocity \(4 \times 10^5 \) m/s making an angle 60º with the field. If the proton completes 10 revolution by the time it cross the region shown, \(\ell \) is close to (mass of proton = \(1.67 \times 10^{-27} \) kg, charge of the proton = \(1.6 \times 10^{-19} \) C)

\[
\ell = 10 \times \text{pitch} = 10 \times \frac{v \cos 60^\circ}{qB} = \frac{10 \pi mv}{qB}
\]

Put in the value of given data we find \(\ell = 0.44 \) m.

A heat engine is involved with exchange of heat of 1915 J, \(-40\) J, \(+125\) J and \(-Q\) J, during one cycle achieving and efficiency of 50.0%. The value of \(Q \) is:

\[
\eta = \frac{W}{\sum Q_i} = \frac{Q_1 + Q_2 + Q_3 + Q_4}{Q_1 + Q_3} = 0.5
\]

\[
\Rightarrow \frac{1915 - 40 + 125 + Q_4}{1915 + 125} = 0.5
\]

\[
\Rightarrow \frac{Q_4 = 1020 - 2000}{Q_4 = -Q = -980} = 980 \text{ J}
\]

\[
Q = 980 \text{ J}
\]
6. In a hydrogen atom the electron makes a transition from \((n + 1)\)th level to the \(n\)th level. If \(n >> 1\), the frequency of radiation emitted is proportional to:

(1) \(\frac{1}{n^2}\)
(2) \(\frac{1}{n}\)
(3) \(\frac{1}{n^3}\)
(4) \(\frac{1}{n^4}\)

Ans. (3)

Sol.
\[E_n = -\frac{Rhc}{n^2} \]
\[E_{n+1} = -\frac{Rhc}{(n+1)^2} \]
\[\Delta E = E_{n+1} - E_n \]
\[h\nu = \frac{Rhc}{n^2} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right) \]
\[\nu = \frac{Rc}{n^2} \left[\frac{(n+1)^2 - n^2}{n^2(n+1)^2} \right] = \frac{Rc}{n^2} \left[\frac{1+2n}{n^2(n+1)^2} \right] \]
\[n >> 1 \Rightarrow \nu \approx \frac{Rc}{n^2} \left[\frac{2n}{n^2 \times n^2} \right] = \frac{2Rc}{n^3} \]

7. In a Young’s double slit experiment, 16 fringes are observed in a certain segment of the screen when light of wavelength 700 nm is used. If the wavelength of light is changed to 400 nm, the number of fringes observed in the same segment of the screen would be:

(1) 24
(2) 18
(3) 28
(4) 30

Ans. (3)

Sol.
\[y = \frac{mD\lambda_1}{d} = \frac{mD\lambda_2}{d} \]
\[\frac{m_2}{m_1} = \frac{\lambda_1}{\lambda_2} \Rightarrow m_2 = \frac{700}{400} \times 16 = 28 \]

8. A potentiometer wire PQ of 1m length is connected to a standard cell \(E_1\). Another cell \(E_2\) of emf 1.02 V is connected with a resistance ‘r’ and switch S (as shown in figure). With switch S open, the null position is obtained at a distance of 49 cm from Q. The potential gradient in the potentiometer wire is:

(1) 0.01 V/cm
(2) 0.04 V/cm
(3) 0.03 V/cm
(4) 0.02 V/cm

Ans. (4)
9. The displacement time graph of a particle executing SHM is given in figure: (sketch is schematic and not to scale)

Which of the following statements is/are true for this motion?

(A) The force is zero at \(t = \frac{3T}{4} \)
(B) The acceleration is maximum at \(t = T \)
(C) The speed is maximum at \(t = \frac{T}{4} \)
(D) The P.E. is equal to K.E. of the oscillation at \(t = \frac{T}{2} \)

Ans. (4)

Sol. From graph equation of SHM.

\[X = A \cos \omega t \]

(A) at \(\frac{3T}{4} \) particle at mean position
\[\therefore a = 0 \]
\[F = 0 \]

(B) at \(T \) particle again at extreme position so acceleration is maximum

(C) at \(\frac{T}{4} \) particle is at mean position so velocity maximum.
\[\therefore a = 0 \]

(D) \(KE = PE \)
\[\frac{1}{2}k(A^2 - x^2) = \frac{1}{2}kx^2 \]
\[A^2 = 2x^2 \]
\[x = \pm A \]
\[\frac{A}{\sqrt{2}} = A \cos \omega t \]
\[t = T/8 \]
\[\therefore A, B \text{ and } C \text{ are correct} \]
10. In the following, digital circuit, what will be the output 'Z', when the input (A,B) are (1,0), (0,0), (1,1), (0,1).

\[\text{Ans.} \quad (1) \, 1,1,0,1 \quad (2) \, 0,1,0,0 \quad (3) \, 1,0,1,1 \quad (4) \, 0,0,1,0 \]

\[\text{Sol.} \]

\[\begin{array}{|c|c|c|c|c|c|}
\hline
A & B & \overline{A} \cdot \overline{B} & A + B & \overline{P} = \overline{AB} \cdot (A + B) & Q = P + (\overline{AB}) & \overline{Q} = X \\
\hline
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline
\end{array} \]

\[\therefore \text{option (i) is the Answer} \]

11. In momentum (P), area (A) and time (T) are taken to be the fundamental quantities then the dimensional formula for energy is:

\[(1) \, [P^2 \cdot A^1 \cdot T^{-1}] \quad (2) \, [P^{-1} \cdot A^1 \cdot T^1] \quad (3) \, [P^{1/2} \cdot A^{-1} \cdot T^{-1}] \quad (4) \, [P^{-1} \cdot T^{-2}] \]

\[\text{Ans.} \quad (3) \]

\[\text{Sol.} \]

Let the dimension formula of energy will be

\[E = A^a \cdot T^b \cdot P^c \]

\[P = M^1 \cdot L^1 \cdot T^{-1} \]

\[A = L^2 \]

\[T = T^1 \]

\[M^1 \cdot L^2 \cdot T^{-2} = M^0 \cdot L^{2a+c} \cdot T^{b-c} \]

by comparison

\[C = 1 \quad \ldots(1) \]

\[2a + c = 2 \quad \ldots(2) \]

\[b - c = -2 \quad \ldots(3) \]

\[c = 1, \quad a = 1/2, \quad b = -1 \]

\[E = A^{1/2} \cdot T^{-1} \cdot P^1 \]
12. A charge Q is distributed over two concentric conducting thin spherical shells radii r and R ($R > r$). If the surface charge densities on the two shells are equal, the electric potential at the common centre is:

$$\text{Ans. (4)}$$

$$\text{Sol. }$$

$$Q_1 = \sigma 4\pi r^2$$
$$Q_2 = \sigma 4\pi R^2$$
$$\therefore \quad Q = \sigma 4\pi (r^2 + R^2)$$
$$\therefore \quad \sigma = \frac{Q}{4\pi (r^2 + R^2)}$$

$$V_C = \frac{KQ_1}{r} + \frac{KQ_2}{R}$$
$$= \frac{K\sigma 4\pi r^2}{r} + \frac{K\sigma 4\pi R^2}{R}$$
$$= \frac{K\sigma 4\pi (r + R)}{r}$$
$$= \frac{K\sigma 4\pi (r + R)}{(r^2 + R^2)}$$

13. In plane electromagnetic wave, the directions of electric field and magnetic field are represented by \hat{k} and $2\hat{j}$, respectively. What is the unit vector along direction of propagation of the wave.

$$\text{Ans. (4)}$$

$$\text{Sol. }$$

$$\hat{E} \times \hat{B} \parallel \hat{C}$$

$$\hat{E} \times \hat{B} = \frac{1}{\sqrt{2}} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = \frac{\hat{i} + \hat{j}}{\sqrt{2}} \Rightarrow \hat{C} = \frac{\hat{i} + \hat{j}}{\sqrt{2}}$$
14. A small point mass carrying some positive charge on it, is released from the edge of a table. There is a uniform electric field in this region in the horizontal direction. Which of the following options then correctly describe the trajectory of the mass? (Curves are drawn schematically and are not to scale)

Net acceleration of particle is constant, initial velocity is zero therefore path is straight line.

15. An ideal gas in a closed container is slowly heated. As its temperature increases, which of the following statements are true?

(A) the mean free path of the molecules decreases
(B) the mean collision time between the molecules decreases.
(C) the mean free path remains unchanged.
(D) the mean collision time remains unchanged.

(A) and (D) (B) and (C) (C) and (D) (A) and (B)

As we know mean free path

\[\lambda = \frac{1}{\sqrt{2\pi N/V} \pi d^2} \]

N = no. of molecule
V = volume of container
d = diameter of molecule

Velocity constant and no. of molecules are same.
So mean free path remains same.
As temperature increases no. of collision increases so relaxation time decrease.
16. A carrying current I is bent in the shape ABCDEFA as shown, where rectangle ABCEA and ADEFA are perpendicular to each other. If the sides of the rectangles are of lengths a and b, then the magnitude and direction of magnetic moment of the loop ABCDEFA is:

\[\mathbf{M} = Iab(\mathbf{j} + \mathbf{k}) \]

(1) \(\sqrt{2}abI \) along \(\mathbf{j} + \frac{\mathbf{k}}{\sqrt{2}} \)

(2) \(\sqrt{2}abI \) along \(\mathbf{j} + \frac{2\mathbf{k}}{\sqrt{5}} \)

(3) \(abI \) along \(\mathbf{j} + \frac{2\mathbf{k}}{\sqrt{5}} \)

(4) \(abI \) along \(\mathbf{j} + \frac{\mathbf{k}}{\sqrt{2}} \)

Ans. (1)

Sol.

Loop ABCD
\(\mathbf{M}_1 = (abi)\mathbf{k} \)

For Loop DEFA
\(\mathbf{M}_2 = (abi)\mathbf{j} \)

\(\mathbf{M} = \mathbf{M}_1 + \mathbf{M}_2 \); \(\mathbf{M} = (abi)(\mathbf{j} + \mathbf{k}) \)

\[\mathbf{M} = \sqrt{2}abI \left(\mathbf{j} + \frac{\mathbf{k}}{\sqrt{2}} \right) \]

17. A particle is moving 5 times as fast as an electron. The ratio of the de-Broglie wavelength of the particle to that of the electron is \(1.878 \times 10^{-4} \). The mass of the particle is close to:

(1) \(1.2 \times 10^{-28} \) kg
(2) \(9.7 \times 10^{-28} \) kg
(3) \(9.1 \times 10^{-31} \) kg
(4) \(4.8 \times 10^{-27} \) kg

Ans. (2)

Sol.

\[\lambda = \frac{h}{mv} \]

\[\Rightarrow \quad \frac{m'}{m} = \frac{\lambda'}{\lambda} = \frac{1}{5} \times \frac{1}{1.878} \times 10^{-4} \times 9.1 \times 10^{-31} \]

\(m' = 9.7 \times 10^{-28} \) kg

18. The height 'h' at which the weight of a body will be the same as that at the same depth 'h' from the surface of the earth is (Radius of the earth is R and effect of the rotation of the earth is neglected)

(1) \(\frac{R}{2} \)
(2) \(\frac{\sqrt{5}R - R}{2} \)
(3) \(\frac{\sqrt{5}R - R}{2} \)
(4) \(\frac{\sqrt{3}R - R}{2} \)

Ans. (2)
Sol. \[
\frac{GM}{(R + h)^2} = \frac{GM}{R^3}(R - h)
\]
\[
R^3 = (R + h)^2 (R - h)
\]
\[
= (R^2 + h^2 + 2hR) (R - h)
\]
\[
R^3 = R^3 + h^2R + 2hR^2 - R^2h - h^3 - 2h^2R
\]
\[
h^3 + h^2R - R^2h = 0
\]
\[
h^3 + h^2R - R^2 = 0
\]
\[
h = \frac{-R \pm \sqrt{R^2 + 4(1)R^2}}{2}
\]
\[
= \frac{-R + \sqrt{5}R}{2}
\]
\[
= \frac{(\sqrt{5} - 1)R}{2}
\]

19. A 10\(\mu\)F capacitor is fully to a potential difference of 50 V. After removing the source voltage it is connected to an uncharged capacitor in parallel. Now the potential difference across them becomes 20 V. The capacitance of the second capacitor is:

- (1) 10\(\mu\)F
- (2) 20\(\mu\)F
- (3) 30\(\mu\)F
- (4) 15\(\mu\)F

Ans. (4)

Sol. \[
V = \frac{C_1V_1 + C_2V_2}{C_1 + C_2}
\]
\[
20 = \frac{10 \times 50 + 0}{20 + C}
\]
\[
C = 15\mu\text{F}
\]

20. An inductance coil has a reactance of 100\(\Omega\). When an AC signal of frequency 1000 Hz is applied to the coil, the applied voltage leads the current by 45°. The self-inductance of the coil is:

- (1) 5.5 \times 10^{-5} H
- (2) 1.1 \times 10^{-2} H
- (3) 6.7 \times 10^{-7} H
- (4) 1.1 \times 10^{-1} H

Ans. (2)

Sol. \[
\tan\theta = \frac{x_L}{R} = \tan45°
\]
\[
x_L = R
\]
\[
= 100 = \sqrt{x_L^2 + R^2}
\]
\[
100 = \sqrt{R^2 + R^2}
\]
\[
\sqrt{2R} = 100
\]
\[
R = 50\sqrt{2}
\]
\[
\therefore x_L = 50\sqrt{2}
\]
\[
L = \frac{50\sqrt{2}}{2\pi \times 1000} = \frac{25\sqrt{2}}{\pi} \text{ mH.}
\]
\[
= 1.1 \times 10^{-2} \text{ H}
\]
Numerical Value Type (संख्यात्मक प्रकार)
This section contains 5 Numerical value type questions.
इस खण्ड में 5 संख्यात्मक प्रकार के प्रश्न हैं।

21. A particle of mass m is moving along the x-axis with initial velocity \(u \). It collides elastically with a particle of mass 10m at rest and then moves with half its initial kinetic energy (see figure). If \(\sin \theta_1 = \sqrt{n} \sin \theta_2 \) then value of n is __________.

Ans. 10.00
Sol. From momentum conservation in perpendicular direction of initial motion.
\[mv_1 \sin \theta_1 = 10mv_2 \sin \theta_2 \](1)

Given that \(\frac{1}{2} \text{mu}^2 \frac{1}{2} \text{mv}_2^2 \)(2)

From equation (1) & (2)
\[\sin \theta_1 = \sqrt{10} \sin \theta_2 \]
\[n = 10 \]

22. A wire of density \(9 \times 10^{-3} \text{ kg cm}^{-3} \) is stretched between two clamps 1 m apart. The resulting strain in the wire is \(4.9 \times 10^{-4} \). The lowest frequency of the transverse vibrations in the wire (Young's modulus of wire \(Y = 9 \times 10^{10} \text{ Nm}^{-2} \)), (to the nearest integer),________

Ans. 35.00
Sol. Fundamental frequency in the string
\[f = \frac{1}{2\ell} \sqrt{\frac{1}{\mu} \frac{1}{T} \frac{T}{T} \frac{\sqrt{Y\ell}}{\rho\ell}} \]
\[f = \frac{1}{2\ell} \sqrt{\frac{\sqrt{Y\ell}}{\rho\ell}} \]
\[\ell = \frac{4.9 \times 10^{-4}}{9 \times 10^{-10} \times 4.9 \times 10^{-4}} = 35. \]
23. A square shaped hole of side \(l = a/2 \) is carved out at a distance \(d = a/2 \) from the centre \(O \) of a uniform circular disk of radius \(a \). If the distance of the centre of mass of the remaining portion from \(O \) is \(-\frac{a}{X} \), value of \(X \) (to the nearest integer) is:

\[
X = 23
\]

Ans. 23.00

Sol.

\[
X_a = \frac{A_1 - A.1}{A - A_1} = \frac{\pi a^2 \times 0 - a^2 \times \frac{a}{4}}{\pi a^2 - \frac{a^2}{4}} = \frac{-a^3/8}{\frac{1}{4}a^2} = \frac{-a}{2(4\pi - 1)} = \frac{-a}{8\pi - 2} = \frac{-a}{23} = \frac{a}{23}
\]

\[x = 23\]

24. A light ray enters a solid glass sphere of refractive index \(m = \mu = \sqrt{3} \) at an angle of incidence 60°. The ray is both reflected and refracted at the farther surface of the sphere. The angle (in degrees) between the reflected and refracted rays at this surface is _____________.

Ans. 90.00
Apply Snell's law at S_1

$\sin \theta_1 \sin \theta' = \frac{h}{r'}$

$\sin \theta_1 = \frac{1}{\sqrt{3}}$

$r' = \frac{1}{\sqrt{3}}$

$\theta_1 = 60^\circ$

$\theta_1 + \theta' + \theta = 180^\circ$

$\theta' = 90^\circ$

$\theta = 90^\circ$

25. An ideal cell of emf 10V is connected in circuit shown in figure. Each resistance is 2Ω. The potential difference (in V) across the capacitor when it is fully charged is _____________

Ans. 08.00
Sol.

\[i = \frac{10}{\frac{4}{3} + 2} = \frac{10 \times 3}{10} = 3 \text{Amp} \]

\[i_1 = 2 \text{A} \quad \text{and} \quad i_2 = 1 \text{A} \]

\[V_{AB} = 1 \times 2 + 3 \times 2 = 8 \text{ V} \]
Announcing

Rank Booster Part-2
An Exhaustive Online Preparation Course of 3 Weeks for JEE (Advanced) 2020

Course Features

- New specially designed 18 Advanced Worksheets
- Online Live Discussion class (6 per week) each of 1.5 hours for Advanced worksheets
- Exclusive Unit wise Work Sheets covering tough & important concepts
- Revision DPPs for more practice on daily basis
- Medium of Teaching and Content would be only English
- Gyan Sutra booklet: Specially designed package for quick revision of P, C & M

Course Brief

The Rank Booster Part-2 course is recommended for students aiming a top rank in JEE (Advanced) 2020. The course structure is tailored to better the chances through rigorous practice of 18 Advanced Worksheets and their exhaustive conceptual discussion. Also, unit wise worksheets for self practice to strengthen tough and important concepts.

Boosting Aspirations to Reality

Course Starts
07 Sept.

Course Duration
3 Weeks

Course Mode
Online

Course Fee
(Exclusive of GST)
₹5000/-

Limited Seats

Register on www.resonance.ac.in
Toll Free: 1800 258 5555
7023003307, 7728890101 | 7340010333