ALLEN

- 6. The secondary structure of protein is stabilised by: (1) Peptide bond (2) glycosidic bond (3) Hydrogen bonding (4) van der Waals forces Official Ans. by NTA (3) Sol. The secondary structure of protein includes two type : (b) β -pleated sheet (a) α -Helix In α -Helix structure, the poly peptide chain is coil around due to presence of Intramolecular H-Bonding. 7. Fex_2 and Fey_3 are known when x and y are : (1) x = F, Cl, Br, I and y = F, Cl, Br (2) x = F, Cl, Br and y = F, Cl, Br, I (3) x = Cl, Br, I and y = F, Cl, Br, I (4) x = F, Cl, Br, I and y = F, Cl, Br, I Official Ans. by NTA (1) $\underset{(\text{Unstable})}{2\text{FeI}_{3}} \longrightarrow \underset{(\text{Stable})}{2\text{FeI}_{2}} + I_{2}$ Sol. Due to strong reducing nature of Γ $2Fe^{3+} + 2I^- \longrightarrow 2Fe^{2+} + I_2$ remaining halides of Fe^{2+} & Fe^{3+} are stable. 8. Which of the following polymer is used in the manufacture of wood laminates ? (1) *cis*-poly isoprene (2) Melamine formaldehyde resin (3) Urea formaldehyde resin (4) Phenol and formaldehyde resin Official Ans. by NTA (3) **Sol.** Urea –HCHO resin is used in manufacture of wood laminates. 9. Statement I : Sodium hydride can be used as an oxidising agent. Statement II : The lone pair of electrons on nitrogen in pyridine makes it basic. Choose the CORRECT answer from the options Sol. given below : (1) Both statement I and statement II are false (2) Statement I is true but statement II is false (3) Statement I is false but statement II is true (4) Both statement I and statement II are true Official Ans. by NTA (3) Sol. (1) NaH (sodium Hydride) is used as a reducing reagent. In pyridine, due to free electron on N atom, it is basic in nature. Hence statement I is false & II is true.
 - 10. The INCORRECT statement regarding the structure of C_{60} is :
 - (1) The six-membered rings are fused to both six and five-membered rings.
 - (2) Each carbon atom forms three sigma bonds.
 - (3) The five-membered rings are fused only to six-membered rings.
 - (4) It contains 12 six-membered rings and 24 five-membered rings.
 - Official Ans. by NTA (4)
 - **Sol.** Structure of C_{60}

It contain 20 hexagons 20 and 12 pentagons

(12) so option 4 is incorrect.

- 11. The correct statements about H_2O_2 are : (A) used in the treatment of effluents.
 - (B) used as both oxidising and reducing agents.
 - (C) the two hydroxyl groups lie in the same plane.
 - (D) miscible with water.

Choose the correct answer from the options given below :

- (1) (A), (B), (C) and (D)
- (2) (A), (B) and (D) only
- (3) (B), (C) and (D) only
- (4) (A), (C) and (D) only

Official Ans. by NTA (2)

(Open book type) \rightarrow Non planar

 H_2O_2 is used in the treatment of effluents.

$$H_2O_2^{P, A, \bullet, \bullet, O_2}$$
 act as both O.A & R.A.

 H_2O_2 is miscible in water due to hydrogen bonding.

- 12. Ammonolysis of Alkyl halides followed by the treatment with NaOH solution can be used to prepare primary, secondary and tertiary amines. The purpose of NaOH in the reaction is :
 - (1) to remove basic impurities

8

- (2) to activate NH_3 used in the reaction
- (3) to remove acidic impurities
- (4) to increase the reactivity of alkyl halide

Official Ans. by NTA (3)

Sol. alkyl halide

$$\begin{array}{c}
\overbrace{R-X}^{+} \stackrel{:}{\stackrel{:}{N}} H_{3} \xrightarrow{} [R-NH_{3}] X^{-} \\
\overbrace{OH}^{+} \stackrel{:}{\bigvee} \stackrel{H}{\bigvee} X^{-} \xrightarrow{} R-X \xrightarrow{} R-NH + NaX + H_{2}O \\
\downarrow \stackrel{\circ}{OH} \\
\overbrace{OH}^{+} \stackrel{\circ}{\bigvee} H \xrightarrow{} X^{-} \xrightarrow{} R-X \xrightarrow{} R-NH + NaX + H_{2}O \\
\downarrow \stackrel{\circ}{\bigvee} NaOH \\
\begin{array}{c}
\rule{0pt}{}{R-NH-R} + NaX + H_{2}O \\
\overbrace{O}^{2} \stackrel{\circ}{amine} \\
\rule{0pt}{}{R-X} \xrightarrow{} H \\
\rule{0pt}{}{R-X} \xrightarrow{} H \\
\rule{0pt}{}{R-N^{+}-R} X^{-} \xrightarrow{} NaOH \xrightarrow{} R_{3}N+ NaX + H_{2}O \\
\rule{0pt}{}{NaOH} \\
\rule{0pt}{}{R-X} \xrightarrow{} H \\
\rule{0pt}{}{R-X} \xrightarrow{} H \\
\rule{0pt}{}{R-X} \xrightarrow{} H \\
\rule{0pt}{}{R-X} \xrightarrow{} R \xrightarrow{} N+ NaX + H_{2}O \\
\rule{0pt}{}{NaOH} \\
\rule{0pt}{}{R-X} \xrightarrow{} H \\$$

So the purpose of NaOH in the above reactions in to remove acidic impurities.

13. An unsaturated hydrocarbon X on ozonolysis gives A. Compound A when warmed with ammonical silver nitrate forms a bright silver mirror along the sides of the test tube. The unsaturated hydrocarbon X is :

(1)
$$CH_{3}-C = C-CH_{3}$$

 $CH_{3}CH_{3}$
(2) $CH_{3}-C = \checkmark$
(3) $HC = C-CH_{2}-CH_{3}$
(4) $CH_{3}-C = C-CH_{3}$
Official Ans. by NTA (3)

Sol. (X)
$$\frac{Ozonolysis}{Unsaturated}$$
 (A) $\frac{Ammonical}{AgNO_3}$ silver
Hydrocarbon (Tollen's mirror regent)
As (A) compound given positive tollen's test
hence it may consist –CHO (aldehyde group).
or it can be HCOOH
So for the given option :
(3) CH₃–CH₂–C=CH $\frac{Ozonolysis}{CH_3}$ CH₃CH₂COOH + HCOOH
(A) +ve tollen's test
and for other compounds (options):
(1) $CH_3 = C = C \int_{CH_3}^{CH_3} CH_3 = O (Does not show tollen's Test)$
(2) $CH_3 = C = C \int_{CH_3}^{CH_3} CH_3 = O + D = O (Does not show tollen's test)$
(3) $CH_3-C=C-CH_3 \frac{Ozonolysis}{CH_3} CH_3 = C = O + D = O (Does not show tollen's test)$
(4) $CH_3 = C = C \int_{CH_3}^{Ozonolysis} 2CH_3 = C + D = O (Does not show tollen's test)$
14. Which of the following is least basic ?
(1) (CH_3CO) NHC₂H₃
(2) $(C_2H_5)_3$ Ni
(3) $(CH_3CO)_2$ NH
(4) $(C_2H_5)_2$ NH
Official Ans. by NTA (3)
Sol. For the given compounds :
(1) $CH_3-C^2-NH-C_2H_3$; L.P. on Nitrogen is delocalised.
(2) $CH_3-C_3-NH-C_3H_3$; L.P. on Nitrogen is delocalised.
(3) $CH_3-C_3-NH-C_2H_3$; L.P. on Nitrogen is delocalised.
(3) $CH_3-C_3-NH-C_3H_3$; L.P. on Nitrogen is delocalised.
(4) $CH_3-CH_3-NH-CH_3-CH_3$; L.P. on Nitrogen is delocalised.
(3) $CH_3-C_3-NH-C_3-H_3$; L.P. on Nitrogen is delocalised.
(4) $CH_3-CH_3-NH-CH_3-CH_3$; L.P. on Nitrogen is delocalised.
(5) $CH_3-CH_3-NH-CH_3-CH_3$; L.P. on Nitrogen is delocalised.
(6) $CH_3-CH_3-NH-CH_3-CH_3$; L.P. on Nitrogen is delocalised.
(7) $CH_3-CH_3-NH-CH_3-CH_3$; L.P. on Nitrogen is delocalised.
(8) $CH_3-CH_3-NH-CH_3-CH_3$; L.P. on Nitrogen is delocalised.
(9) $CH_3-CH_3-NH-CH_3-CH_3$; L.P. on Nitrogen is delocalised.

- The characteristics of elements X, Y and Z with 15. atomic numbers, respectively, 33, 53 and 83 are :
 - (1) X and Y are metalloids and Z is a metal.
 - (2) X is a metalloid, Y is a non-metal and Z is a metal.
 - (3) X, Y and Z are metals.
 - (4) X and Z are non-metals and Y is a metalloid

Official Ans. by NTA (2)

Sol. $X = {}_{33}As \rightarrow Metalloid$ $Y = {}_{53}I \rightarrow Nonmetal$ $Z = {}_{s_3}Bi \rightarrow Metal$

16. Match List-I with List-II

	List-I Test/Reagents/Observation(s)		List-II Species detected
(a)	Lassaigne's Test	(i)	Carbon
(b)	Cu(II) oxide	(ii)	Sulphur
(c) (d)	Silver nitrate The sodium fusion extract	(iii)	N, S, P, and halogen
	gives black precipitate with acetic acid and lead acetate	(iv)	Halogen Specifically

The correct match is :

(1) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)

- (2) (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)
- (3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
- (4) (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii)

Official Ans. by NTA (3)

Sol. Match list :-

(a) Lassaigne's Test	(iii) N, S, P and Halogen		
(b) Cu(II) Oxide	(i) Carbon		
(c) AgNO ₃	(iv) Halogen specifically.		
(d) Sodium fusion extract given black precipitate with acetic acid and lead acetate (CH ₃ COOH/(CH ₃ COO) ₂ Pb)	(ii) Sulphur		

Option-(a)-(iii) ; (b)-(i) ; (c)-(iv) ; (d)-(ii)

- 17. The INCORRECT statements below regarding colloidal solutions is :
 - (1) A colloidal solution shows colligative properties.
 - (2) An ordinary filter paper can stop the flow of colloidal particles.
 - (3) The flocculating power of Al^{3+} is more than that of Na⁺.
 - (4) A colloidal solution shows Brownian motion of colloidal particles.

Official Ans. by NTA (2)

Sol. * Colloidel solution exhibits colligative properties

> * An ordinary filter can not stop the flow of colloidal particles.

> * Flocculating power increases with increase the opposite charge of electrolyte.

> * Colloidal particles show brownian motion.

18. Arrange the following metal complex/ compounds in the increasing order of spin only magnetic moment. Presume all the three, high spin system.

(Atomic numbers Ce = 58, Gd = 64 and Eu = 63.)

(a)
$$(NH_4)_2[Ce(NO_3)_6]$$
 (b) $Gd(NO_3)_3$ and

(c)
$$Eu(NO_3)_3$$

Answer is :

- (1) (b) < (a) < (c)
- (2) (c) < (a) < (b)
- (3) (a) < (b) < (c)
- (4) (a) < (c) < (b)

Official Ans. by NTA (4)

- Sol. (a) $_{58}\text{Ce} \rightarrow [Xe]4f^2 5d^0 6s^2$ In complex $\text{Ce}^{4+} \rightarrow [Xe] 4f^0 5d^0 6s^0$ there is no unpaired electron so $\mu_{\rm m} = 0$ (b) $_{64}\text{Gd}^{3+} \rightarrow [\text{Xe}]4\text{f}^7 5\text{d}^0 6\text{s}^0$
 - contain seven unpaired electrons so,

 $\mu_{\rm m} = \sqrt{7(7+2)} = \sqrt{63}$ B.M.

(c) $_{63}Eu^{3+} \rightarrow [_{54}Xe]4f^{6} 5d^{0} 6s^{0}$ contain six unpaired electron

so, $\mu_m = \sqrt{6(6+2)} = \sqrt{48}$ B.M.

Hence, order of spin only magnetic movement

b > c > a

ALLEN ARE INSTITUTE KOTA (PA INSTITUTE

SECTION-B

 Ga (atomic mass 70 u) crystallizes in a hexagonal close packed structure. The total number of voids in 0.581 g of Ga is _____

 \times 10²¹. (Round off to the Nearest Integer).

Official Ans. by NTA (15)

Sol. HCP structure : Per atom, there will be one octahedral void (OV) and two tetrahedral voids (TV).

Therefore total three voids per atom are present in HCP structure.

 \rightarrow therefore total no of atoms of Ga will be-

$$= \frac{\text{Mass}}{\text{Molar Mass}} \times N_{\text{A}} = \frac{0.581\text{g}}{70\text{g}/\text{mol}} \times 6.023 \times 10^{23}$$

 \rightarrow Now, total Number of voids = 3 × total no. of atoms

$$= 3 \times \frac{0.581}{70} \times 6.023 \times 10^{23} = 14.99 \times 10^{21}$$
$$= 15 \times 10^{21}$$

- A 5.0 m mol dm⁻³ aqueous solution of KCl has a conductance of 0.55 mS when measured in a cell constant 1.3 cm⁻¹. The molar conductivity of this solution is _____ mSm² mol⁻¹. (Round off to the Nearest Integer) Official Ans. by NTA (143) Official Ans. by ALLEN (14)
- Sol. Given concⁿ of KCl = $\frac{\text{m.mol}}{\text{L}}$: Conductance (G) = 0.55 mS : Cell constant $\left(\frac{\ell}{A}\right) = 1.3 \text{ cm}^{-1}$ To Calculate : Molar conductivity (λ_m) of sol. \rightarrow Since $\lambda_m = \frac{1}{1000} \times \frac{\text{k}}{\text{m}}$ (1) \rightarrow Molarity = 5 × 10⁻³ $\frac{\text{mol}}{\text{L}}$ \rightarrow Conductivity= $G \times \left(\frac{\ell}{A}\right) = 0.55 \text{ mS} \times \frac{1.3}{\frac{1}{100}} \text{m}^{-1}$ = 55 × 1.3 mSm⁻¹ $eq^n(1) \lambda_m = \frac{1}{1000} \times \frac{55 \times 1.3}{\left(\frac{5}{1000}\right)} \frac{\text{mSm}^2}{\text{mol}}$ $\Rightarrow \lambda_m = 14.3 \frac{\text{mSm}^2}{\text{mol}}$

5.

6.

 \Rightarrow

 \Rightarrow

- 3. A and B decompose via first order kinetics with half-lives 54.0 min and 18.0 min respectively. Starting from an equimolar non reactive mixture of A and B, the time taken for the concentration of A to become 16 times that of B is min. (Round off to the Nearest Integer). Official Ans. by NTA (108)
- **Sol.** Given $t_2 = 54 \text{ min}$ $T_{1/2} = 18 \text{ min}$ B t = 0 'x' Mt = 0 'x' M To calculate : $[A_{t}] = 16 \times [B_{t}] \dots (1)$ time = ? \Rightarrow For I order kinetic : $[A_t] =$ \Rightarrow $n \rightarrow no of Half lives$ Now from the relation (1) \Rightarrow $[A_{t}] = 16 \times [B_{t}]$

$$\Rightarrow \quad \frac{X}{(2)^{n_1}} = \frac{X}{(2)^{n_2}} \times 16 \quad \Rightarrow \quad (2)^{n_2} = (2)^{n_1} \times (2)^4$$

$$\Rightarrow n_2 = n_1 + 4 \qquad \Rightarrow \quad \frac{t}{(t_{1/2})_2} = \frac{t}{(t_{1/2})_1} + 4$$
$$\Rightarrow \quad t\left(\frac{1}{18} - \frac{1}{54}\right) = 4 \Rightarrow t = \frac{4 \times 18 \times 54}{36}$$
$$\Rightarrow \quad \boxed{t = 108 \text{ min}}$$

4. In Duma's method of estimation of nitrogen, 0.1840 g of an organic compound gave 30 mL of nitrogen collected at 287 K and 758 mm of Hg pressure. The percentage composition of nitrogen in the compound is . (Round off to the Nearest Integer).

> [Given : Aqueous tension at 287 K = 14 mm of Hg]

Official Ans. by NTA (19)

Sol. In Duma's method of estimation of Nitrogen. 0.1840 gm of organic compound gave 30 mL of nitrogen which is collected at 287 K & 758 mm of Hg.

Given ;

Aqueous tension at 287 K = 14 mm of Hg.Hence actual pressure = (758 - 14)= 744 mm of Hg.

Volume of nitrogen at STP = $\frac{273 \times 744 \times 30}{287 \times 760}$ V = 27.935 mL \therefore 22400 mL of N₂ at STP weighs = 28 gm. \therefore 27.94 mL of N₂ at STP weighs = $\left(\frac{28}{22400} \times 27.94\right)$ gm = 0.0349 gmHence % of Nitrogen = $\left(\frac{0.0349}{0.1840} \times 100\right)$ = 18.97 %Rond off. Answer = 19 %The number of orbitals with n = 5, $m_1 = +2$ is . (Round off to the Nearest Integer). Official Ans. by NTA (3) Sol. For, n = 5 $\ell = (0, 1, 2, 3, 4)$ If $\ell = 0, m = 0$ $\ell = 1, m = \{-1, 0, +1\}$ $\ell = 2, m = \{-2, -1, 0, +1, +2\}$ $\ell = 3, m = \{-3, -2, -1, 0, +1, +2, +3\}$ $\ell = 4, m = \{-4, -3, -2, -1, 0, +1, +2, +3, +4\}$ 5d, 5f and 5g subshell contain one-one orbital having $m_{\ell} = +2$ At 363 K, the vapour pressure of A is 21 kPa and that of B is 18 kPa. One mole of A and 2 moles of B are mixed. Assuming that this solution is ideal, the vapour pressure of the

Official Ans. by NTA (19)

Nearest Integer).

Sol. Given $P_A^0 = 21kPa \implies P_B^0 = 18kPa$ \rightarrow An Ideal solution is prepared by mixing 1 mol A and 2 mol B.

mixture is _____ kPa. (Round of to the

$$\rightarrow X_{A} = \frac{1}{3} \text{ and } X_{B} = \frac{2}{3}$$
$$\rightarrow \text{Acc to Raoult's low}$$
$$P_{T} = X_{A}P_{A}^{0} + X_{B}P_{B}^{0}$$
$$P_{T} = \left(\frac{1}{3} \times 21\right) + \left(\frac{2}{3} \times 18\right)$$
$$P_{T} = 7 + 12 = 19 \text{ KPa}$$

7. Sulphurous acid (H_2SO_3) has $Ka_1 = 1.7 \times 10^{-2}$ and $Ka_2 = 6.4 \times 10^{-8}$. The pH of 0.588 M H₂SO₃ is ______. (Round off to the Nearest Integer) Official Ans. by NTA (1)

Sol. H_2SO_3 [Dibasic acid] c = 0.588 M

ALLEN

- $\Rightarrow \quad pH \text{ of solution } P \text{ due to First dissociation only} \\ \text{ since } K_a, >> Ka_a$
- \Rightarrow First dissociation of H₂SO₃

$$H_2SO_3(aq) \rightleftharpoons H^{\oplus}(aq) + HSO_3(aq) : ka_1 = 1.7 \times 10^{-2}$$

 $t = 0 \quad C$

 \Rightarrow

t C–x x x

 $\implies \qquad \mathbf{Ka}_1 = \frac{1.7}{100} = \frac{[\mathrm{H}^{\oplus}][\mathrm{HSO}_3^{-}]}{[\mathrm{H}_2\mathrm{SO}_3]}$

$$\Rightarrow \frac{1.7}{100} = \frac{x^2}{(0.58 - x)}$$

$$\Rightarrow 1.7 \times 0.588 - 1.7x = 100 x^{2}$$
$$\Rightarrow 100x^{2} + 1.7x - 1 = 0$$

$$\Rightarrow \quad [\mathrm{H}^{\oplus}] = \mathrm{x} = \frac{-1.7 + \sqrt{(1.7)^2 + 4 \times 100 \times 1}}{2 \times 100} = 0.09186$$

Therefore pH of sol. is : $pH = -\log [H^{\oplus}]$ pH = $-\log (0.09186) = 1.036 \approx 1$

8. When 35 mL of 0.15 M lead nitrate solution is mixed with 20 mL of 0.12 M chromic sulphate solution, $____ \times 10^{-5}$ moles of lead sulphate precipitate out. (Round off to the Nearest Integer).

Official Ans. by NTA (525)

Sol. 3 Pb $(NO_3)_2$ + Cr₂ $(SO_4)_3$ → 3PbSO₄ + 2Cr $(NO_3)_3$ 35 ml 20 ml 0.15 M 0.12 M = 5.25 m.mol = 2.4 m.mol 5.25 m.mol

 $= 5.25 \times 10^{-3} \text{ mol}$ therefore moles of PbSO₄ formed = 5.25×10^{-3} = 525×10^{-5}

9. At 25°C, 50 g of iron reacts with HCl to form FeCl₂. The evolved hydrogen gas expands against a constant pressure of 1 bar. The work done by the gas during this expansion is ____ J. (Round off to the Nearest Integer) [Given : $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$. Assume, hydrogen is an ideal gas] [Atomic mass off Fe is 55.85 u] Official Ans. by NTA (2218) **Sol.** $T = 298 \text{ K}, R = 8.314 \frac{\text{J}}{\text{mol K}}$ \rightarrow Chemical reaction is $Fe + 2HCl \rightarrow FeCl_2 + H_2(g)$ P = 1 bar50g $=\frac{50}{55.85}$ mol $\frac{50}{55.85}$ mol \rightarrow Work done for 1 mol gas $= -P_{ext} \times \Delta V$ = ∆ng RT $= -1 \times 8.314 \times 298 \text{ J}$ \rightarrow Work done for $\frac{50}{55.85}$ mol of gas $= -1.8314 \times 298 \times \frac{50}{55.85}$ J = -2218.059 J $\simeq -2218 \text{ J}$ 10. $[Ti(H_2O)_6]^{3+}$ absorbs light of wavelength 498 nm during a d - d transition. The octahedral splitting energy for the above complex is \times 10⁻¹⁹ J. (Round off to the Nearest Integer). h = 6.626×10^{-34} Js; c = 3×10^8 ms⁻¹. Official Ans. by NTA (4) $\lambda_{absorbed} = 498 \text{ nm (given)}$ The octahedral spilitting energy Sol. $\Delta_0 \text{ or } E = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{498 \times 10^{-9}}$ $= 0.0399 \times 10^{-17} \text{ J}$

=
$$3.99 \times 10^{-19}$$
 J
= 4.00×10^{-19} J (round off)