JEE (Main) 2020

COMPUTER BASED TEST (CBT)
Questions & Solutions

Date: 05 September, 2020 (SHIFT-1) | TIME: (9.00 a.m. to 12.00 p.m)

Duration: 3 Hours | Max. Marks: 300

SUBJECT: MATHEMATICS

This solution was download from Resonance JEE (MAIN) 2020 Solution portal
Many Dreamers... Many Achievers...

It’s your turn now!

ADMISSION OPEN (2020-21)

For Classroom Programs*

TARGET
JEE (Main+Advanced) 2021
COURSE
VIJAY

TARGET
JEE (Main) 2021
COURSE
AJAY

TARGET
JEE (Main+Advanced) 2021
COURSE
iVISHESH

Scholarship upto 90% on JEE (Main) 2020 %ile Score

Digital Program

Salient features

- Live Interactive Classes & Recorded Lectures
- Online Study Material & DPPs (Daily Practice Problems)
- Discussion & Doubt Clearing Classes (Every week for each subject)
- CBT - Computer Based Test & Performance Analysis
- Discussion Forum for Doubt Clearing & Additional Learning

For Class 7th to 12th +

*Presently classes would be offered Online and Offline classes would resume as per Government Guidelines.

Toll Free: 1800 258 5555 | Visit us: www.resonance.ac.in
SECTION – 1 : (Maximum Marks : 80)

Straight Objective Type (सीधे वस्तुनिष्ठ प्रश्न)

This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which Only One is correct.

Part: Mathematics

1. A survey shows that 73% of the persons working in an office like coffee, whereas 65% like tea. If \(x \) denotes the percentage of them, who like both coffee and tea, then \(x \) cannot be:

(1) 36 (2) 63 (3) 38 (4) 54

Ans. (1)

Sol.

\[n(C) = 73, \quad n(T) = 65, \quad n(C \cap T) = x \]

\[n(C \cup T) \leq 100 \]

\[\Rightarrow \quad n(C) + n(T) - n(C \cap T) \leq 100 \]

\[\Rightarrow \quad x \geq 38 \]

\[n(C \cap T) \leq \min(n(C), n(T)) \quad \Rightarrow \quad x \leq 65 \]

\[38 \leq x \leq 65 \]

2. If the function \(f(x) = \begin{cases} k_1(x-\pi)^2 - 1, & x \leq \pi \\ k_2 \cos x, & x > \pi \end{cases} \) is twice differentiable, then the ordered pair \((k_1, k_2)\) is equal to:

(1) \(\left(\frac{1}{2}, -1\right)\) (2) \(\left(\frac{1}{2}, 1\right)\) (3) \(1, 0\) (4) \(1, 1\)

Ans. (2)

Sol.

\(f(x) \) is differentiable then will also continuous

\[f(\pi) = -1, \quad f(\pi^+) = -k_2 \]

\(k_2 = 1 \)

Now

\[f'(x) = \begin{cases} 2k_1(x-\pi), & x \leq \pi \\ -k_2 \sin x, & x > \pi \end{cases} \]

then

\[f'(\pi^-) = f'(\pi^+) = 0 \]

\[f''(x) = \begin{cases} 2k_1, & x \leq \pi \\ -k_2 \cos x, & x > \pi \end{cases} \]

then

\[2k_1 = k_2 \]

\[k_1 \cdot \frac{1}{2} \]

3. If \(3^2\sin 2\alpha - 1\), \(14\), and \(3^4 - 2\sin 2\alpha\) are the first three terms of an A.P. for some \(\alpha\), then the sixth term of this A.P. is:

(1) 81 (2) 65 (3) 66 (4) 78

Ans. (3)

Sol.

\(a, b, c \) are in AP then

\[2b = a + c \]

\[28 = 3^2\sin 2\alpha - 1 + 3^4 - 2\sin 2\alpha \]

Put \(3^2\sin 2\alpha = x \)

\[28 = \frac{x}{3} \cdot \frac{81}{x} \Rightarrow x^2 - 84x + 243 = 0 \]

\((x - 3)(x - 81) = 0\)
$3^{2 \sin 2 \theta} = 3$ or 3^4
$2\sin 2\theta = 1$ or 4
$\sin 2\theta = \frac{1}{2}$

Terms are $1, 14, 27, \ldots$ then $T_6 = 1 + 5 = 6$ (13)

4. If S is the sum of the first 10 terms of the series $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \tan^{-1}\left(\frac{1}{21}\right) + \ldots$, then $\tan(S)$ is equal to:

$\begin{align*}
\text{(1)} & \quad \frac{\pi}{4} \\
\text{(2)} & \quad \frac{5}{11} \\
\text{(3)} & \quad \frac{5}{6} \\
\text{(4)} & \quad \frac{10}{11}
\end{align*}$

Ans. (3)
Sol. $S = \tan^{-1}(1) + \tan^{-1}(1) + \tan^{-1}(1) + \ldots$ up to 10 term
$S = \tan^{-1}\left(1\right) + \tan^{-1}\left(2\right) + \tan^{-1}\left(3\right) + \ldots + \tan^{-1}\left(10\right)$
$S = (\tan^{-1}1 - \tan^{-1}1) + (\tan^{-1}2 - \tan^{-1}1) + (\tan^{-1}3 - \tan^{-1}2) + \ldots + (\tan^{-1}10 - \tan^{-1}9)$
$S = \tan^{-1}(1) - 10 $ $\tan(1) = \frac{\pi}{4}$
$\tan(S) = \frac{5}{6}$

5. If $2^{10} + 2^9 \cdot 3^1 + 2^8 \cdot 3^2 + \ldots + 2 \cdot 3^9 + 3^{10} = 3^{10} = S - 2^{11}$ then S is equal to:

$\begin{align*}
\text{(1)} & \quad 3^{11} \\
\text{(2)} & \quad 2 \cdot 3^{11} \\
\text{(3)} & \quad \frac{3^{11}}{2} + 2^{10} \\
\text{(4)} & \quad 3^{11} - 2^{12}
\end{align*}$

Ans. (1)
Sol. $S' = 2^{10} + 2^9 \cdot 3^1 + 2^8 \cdot 3^2 + \ldots + 2 \cdot 3^9 + 3^{10}$
G.P. $\rightarrow a = 2^{10}, r = \frac{3}{2}, n = 11$
$S' = 2^{10} \cdot \left(\frac{3^{11}}{2^{11}} - 1\right)$
$= 3^{11} - 2^{11}$

6. If the common tangent to the parabolas, $y^2 = 4x$ and $x^2 = 4y$ also touches the circle, $x^2 + y^2 = c^2$, then c is equal to:

$\begin{align*}
\text{(1)} & \quad \frac{1}{\sqrt{2}} \\
\text{(2)} & \quad \frac{1}{2\sqrt{2}} \\
\text{(3)} & \quad \frac{1}{2} \\
\text{(4)} & \quad \frac{1}{4}
\end{align*}$

Ans. (1)
Sol. $y^2 = 4x \& x^2 = 4y$
Any tangent of $y^2 = 4x$ is $y = mx + \frac{1}{m}$
It also tangent for $x^2 = 4y$
7. If $y = y(x)$ is the solution of the differential equation $\frac{5 + e^x}{2 + y} \frac{dy}{dx} + e^x = 0$ satisfying $y(0) = 1$, then a value of $y(\log_{13} e)$ is:

(1) -1
(2) 0
(3) 2
(4) 1

Ans. (1)

Sol. Given $\frac{dy}{dx} = \frac{-e^x dx}{2 + y}$

$\ln(2 + y) = -\ln(5 + e^x) + \ln C$

$y = \frac{5 + e^x}{e^x - 2}$

$y(0) = 1$ \quad \therefore \quad C = 18$

$y = \left(\log_{13} e\right) = -1$

8. If $\int (e^{2x} + 2e^x - e^{-x} - 1)e^{(e^x + e^{-x})} dx = g(x)e^{(e^x + e^{-x})} + c$, where c is a constant of integration, then $g(0)$ is equal to:

(1) 1
(2) e
(3) e^2
(4) 2

Ans. (4)

Sol. $I = \int (e^{2x} + 2e^x - e^{-x} - 1)e^{(e^x + e^{-x})} dx$

$I = \int (e^{2x} + e^x - 1)e^{(e^x + e^{-x})} dx + \int (e^x - e^{-x})e^{(e^x + e^{-x})} dx$

$I = \int (e^{x+1} - e^{-x})e^{e^x + e^{-x}} dx + e^{e^x + e^{-x}}$

$\left(\frac{x^2 - x - 2}{x + \alpha - 4}\right)$ is equal to:

(1) $\frac{3}{2}$
(2) $\frac{3}{\sqrt{2}}$
(3) $\frac{1}{\sqrt{2}}$
(4) $\frac{1}{2}$

Ans. (2)
10. If the co-ordinates of two points A and B are \((\sqrt{7}, 0)\) and \((-\sqrt{7}, 0)\) respectively and P is any point on the conic, \(9x^2 + 16y^2 = 144\), then \(PA + PB\) is equal to:

Ans. (1)

Sol. For ellipse \(\frac{x^2}{16} + \frac{y^2}{9} = 1\), \(a = 4, b = 3\), \(e = \sqrt{1 - \frac{9}{16}} = \frac{\sqrt{7}}{4}\)

A and B are foci
then \(PA + PB = 2a = 2(4) = 8\)

11. The product of the roots of the equation \(9x^2 - 18|x| + 5 = 0\) is:

Ans. (1)

Sol. \(x^2 = |x|^2 = t\) let

\(9t^2 - 18t + 5 = 0\)

\(3t - 1) (3t - 5) = 0\)

\(|x| = \frac{1}{3} \times \frac{5}{3} = \frac{5}{3}\)

product of roots = \(\frac{1}{3} \times \frac{5}{3} \times \frac{-5}{3} = \frac{25}{81}\)

12. If the volume of a parallelepiped, whose conterminous edges are given by the vectors \(\vec{a} = \hat{i} + \hat{j} + \hat{k}\), \(\vec{b} = 2\hat{i} + 4\hat{j} - n\hat{k}\) and \(\vec{c} = \hat{i} + n\hat{j} + 3\hat{k}\) \((n \geq 0)\), is 158 cu-units, then:

Ans. (3)

Sol. Volume of parallelepiped \(v = |\vec{a} \cdot \vec{b} \cdot \vec{c}|\)

\[\begin{vmatrix}
1 & 1 & n \\
2 & 4 & -n \\
1 & n & 3
\end{vmatrix} = \pm 158\]

\(1(12 + n^2) - 1(6 + n) + n(2n - 4) = \pm 158\)
If the point P on the curve, \(4x^2 + 5y^2 = 20\) is farthest from the point Q(0, -4), then \(PQ^2\) is equal to:

1. (1) 29
2. (2) 48
3. (3) 21
4. (4) 36

Ans. (4)

Sol.

Equation \(\frac{x^2}{5} + \frac{y^2}{4} = 1\) then \(P\left(\sqrt{5}\cos \theta, 2\sin \theta\right)\)

\[
(PQ)^2 = 5\cos^2 \theta + 4(\sin \theta + 2)^2 = \cos^2 \theta + 16\sin \theta + 20 = -\sin^2 \theta + 16\sin \theta + 21
\]

\[
= 85 - (\sin \theta - 8)^2
\]

\[= (PO)_{\text{max}}^2 = 85 - 49 = 36, \quad \therefore (\sin \theta - 8)^2 \in [49, 81]
\]

If (a, b, c) is the image of the point (1, 2, -3) in the line,

\[
\frac{x + 1}{2} = \frac{y - 3}{2} = \frac{z}{-1} = r
\]

\[
\text{line: } x + 1 = y - 3 = z = r
\]

Ans. (3)

Sol.

\[
R(-1 + 2r, 3 - 2r, -r)
\]

Dr's of PR are \((2 - 2r, -1 + 2r, -3 + r)\)

Then \(2(2 - 2r) + 2(1 - 2r) + 1(3 - r) = 0\)

\(9 - 9r = 0 \quad \Rightarrow \quad r = 1\)

R(1, 1, -1)

\[
a + 1 = 2, \quad b + 2 = 2, \quad c - 3 = -2
\]

\[
a = 1, \quad b = 0, \quad c = 1
\]

\[\therefore a + b + c = 2
\]

If the four complex numbers \(z, z, z - 2\text{Re}(z)\) and \(z - 2\text{Re}(z)\) represent the vertices of a square of side 4 units in the Argand plane, then \(|z|\) is equal to:

1. (1) 4
2. (2) 2
3. (3) \(4\sqrt{2}\)
4. (4) \(2\sqrt{2}\)

Ans. (4)
16. If the minimum and the maximum values of the function $f: \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \to \mathbb{R}$, defined by

$$f(\theta) = \begin{vmatrix} -\sin^2\theta & -1 & 1 \\ -\cos^2\theta & -1 & 1 \\ 12 & 10 & -2 \end{vmatrix} = 4(\cos^2\theta - \sin^2\theta) = 4(\cos 2\theta), \quad \theta \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$$

are m and M respectively, then the ordered pair (m, M) is equal to:

(1) $(-4, 4)$
(2) $(0, 2\sqrt{2})$
(3) $(-4, 0)$
(4) $(0, 4)$

Ans. (3)

Sol. $C_2 \to C_2 - C_1$

$$f(\theta)_{\text{max}} = M = 0$$
$$f(\theta)_{\text{min}} = m = -4$$

17. The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to:

(1) $(\sim x \land y) \lor (\sim x \land \sim y)$
(2) $(x \land y) \lor (\sim x \land \sim y)$
(3) $(x \land \sim y) \land (\sim x \land y)$
(4) $(x \land y) \land (\sim x \land \sim y)$

Ans. (2)

Sol. Negation of $x \leftrightarrow \sim y$

$$= \sim(x \leftrightarrow \sim y)$$
$$= x \leftrightarrow \sim(\sim y)$$
$$= x \leftrightarrow y$$
$$= (x \land y) \lor (\sim x \land \sim y)$$
18. Let $\lambda \in \mathbb{R}$. The system of linear equations

\[
\begin{align*}
2x_1 - 4x_2 + \lambda x_3 &= 1 \\
x_1 - 6x_2 + x_3 &= 2 \\
\lambda x_1 - 10x_2 + 4x_3 &= 3
\end{align*}
\]

is inconsistent for:

(1) every value of λ
(2) exactly two values of λ
(3) exactly one positive value of λ
(4) exactly one negative value of λ

Ans. (4)

Sol.
\[D = \begin{vmatrix} 2 & -4 & \lambda \\ 1 & -6 & 1 \\ \lambda & -10 & 4 \end{vmatrix} = (\lambda - 3)(3\lambda + 2)\]

\[D = 0 \implies \lambda = 3, -\frac{2}{3}\]

\[D_1 = \begin{vmatrix} 2 & -4 & 1 \\ 1 & -6 & 1 \\ 3 & -10 & 4 \end{vmatrix} = 2(3 - \lambda)\]

\[\lambda = -\frac{2}{3}, D_1 \neq 0\]

19. The mean and variance of 7 observations are 8 and 16, respectively. If five observation are 2, 4, 10, 12, 14 then the absolute difference of the remaining two observations is:

(1) 1
(2) 2
(3) 3
(4) 4

Ans. (2)

Sol.
\[\bar{x} = \frac{2 + 4 + 10 + 12 + 14 + x + y}{7} = 8 \implies 42 + x + y = 56 \implies x + y = 14\]

\[\sigma^2 = \frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2\]

\[16 = \frac{4 + 16 + 100 + 144 + x^2 + y^2}{7} - (8)^2\]

\[\implies 16 + 64 = \frac{460 + x^2 + y^2}{7} \implies 560 = 460 + x^2 + y^2 \implies x^2 + y^2 = 100 \quad \text{...(2)} \implies xy = 48\]

\[(x - y)^2 = (x + y)^2 - 4xy = 4\]

\[|x - y| = 2\]
20. The value of \(\int_{-\pi/2}^{\pi/2} \frac{1}{1+e^{\sin x}} \, dx \) is:

(1) \(\frac{\pi}{4} \)
(2) \(\frac{\pi}{2} \)
(3) \(\frac{3\pi}{2} \)
(4) \(\pi \)

Ans. (2)

Sol.
\[
I = \int_{-\pi/2}^{\pi/2} \frac{1}{1+e^{\sin x}} \, dx
\]
\[
= \int_{-\pi/2}^{\pi/2} \frac{e^{\sin x}}{1+e^{\sin x}} \, dx
\]
Replace \(x \rightarrow (a+b+x) \)
\[
b \int (f(x)) \, dx = \int (a+b+x) \, dx
\]
\[
= \int_0^1 (a+b+x) \, dx
\]
\[
2I = \int_{-\pi/2}^{\pi/2} \frac{x}{2} \, dx
\]
\[
\Rightarrow I = \frac{\pi}{2}
\]

SECTION – 2 : (Maximum Marks : 20)

- This section contains FIVE (05) questions. The answer to each question is NUMERICAL VALUE with two digit integer and decimal upto one digit.
- If the numerical value has more than two decimal places truncate/round-off the value upto TWO decimal places.
 - Full Marks : +4 If ONLY the correct option is chosen.
 - Zero Marks : 0 In all other cases

खंड 2 (अविकल्म अंक: 20)
- इस खंड में पांच (05) प्रश्न हैं। प्रत्येक प्रश्न का उत्तर संख्यात्मक मान (NUMERICAL VALUE) हैं, जो द्वि-अंकीय पूर्णाक तथा दशमलव एकल-अंक में हैं।
- यदि संख्यात्मक मान में दो से अधिक दशमलव स्थान हैं, तो संख्यात्मक मान को दशमलव के दो स्थानों तक ट्रूपेट/रांपड ऑफ (truncate/round-off) करें।
- अंकन योजना:
 - पूर्ण अंक : +4 यदि शीर्ष सही विकल्प ही चुना गया है।
 - शून्य अंक : 0 अन्य सभी परिस्थितियों में।

21. The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike, is __________.

Ans. (240.00)

Sol. SYLLABUS
S-2, L-2, A, B, Y, U

Required = \(\frac{2! \cdot 5!}{2!} \) = 210 \times \frac{24}{2} = 240
22. The natural number \(m \), for which the coefficient of \(x \) in the binomial expansion of \(\left(x^m + \frac{1}{x^2} \right)^{22} \) is 1540, is

Ans. \(13 \) (00)

Sol.
\[
T_{r+1} = \binom{22}{r} x^{22-r} \cdot \left(\frac{1}{x^2} \right)^r = \binom{22}{r} \cdot x^{22-3r}
\]

\(22m - mr - 2r = 1 \)
\[
r = \frac{22m - 1}{m + 2}
\]
\[
r = \frac{22m + 44 - 45}{m + 2}
\]
so possible value of \(m = 1, 3, 7, 13, 43 \)
but \(\binom{20}{r} = 1540 \) only possible condition is \(m = 13 \)

23. If the line, \(2x - y + 3 = 0 \) is at a distance \(\frac{1}{\sqrt{5}} \) and \(\frac{2}{\sqrt{5}} \) from the lines \(4x - 2y + \alpha = 0 \) and \(6x - 3y + \beta = 0 \), respectively, then the sum of all possible values of \(\alpha \) and \(\beta \) is

Ans. \(30 \) (00)

Sol.
\[
2x - y + 3 = 0 \quad \text{.....(i)}
\]
\[
4x - 2y + \alpha = 0 \quad \Rightarrow \quad 2x - y + \frac{\alpha}{2} = 0 \quad \text{.....(ii)}
\]
\[
6x - 3y + \beta = 0 \quad \Rightarrow \quad 2x - y + \frac{\beta}{3} = 0 \quad \text{.....(iii)}
\]
\[
d_1 = \frac{|\alpha - 3|}{\sqrt{2^2 + 1^2}} = \frac{1}{\sqrt{5}} \quad \Rightarrow \quad |\alpha - 6| = 2 \quad \Rightarrow \quad \alpha - 6 = 2, -2 \quad \Rightarrow \quad \alpha = 8, 4
\]
\[
d_2 = \frac{|\beta - 3|}{\sqrt{2^2 + 1^2}} = \frac{2}{\sqrt{5}} \quad \Rightarrow \quad |\beta - 9| = 6 \quad \Rightarrow \quad \beta - 9 = 6, -6 \quad \Rightarrow \quad \beta = 15, 3
\]
Sum of all values of \(\alpha \) and \(\beta \) = 30.

24. Let \(f(x) = x \cdot \left[\frac{x}{2} \right] \), for \(-10 < x < 10\), where \([t]\) denotes the greatest integer function. Then the number of points of discontinuity of \(f \) is equal to

Ans. \(08 \) (00)

Sol.
\[
-5 < \frac{x}{2} < 5
\]
\[
\Rightarrow \quad \left[\frac{x}{2} \right] = -5, -4, -3, -2, -1, 0, 1, 2, 3, 4
\]
Hence, function is discontinuous at \(-4, -3, -2, -1, 1, 2, 3, 4\)
Number of values is 8.
25. Four fair dice are thrown independently 27 times. Then the expected number of times, at least two dice show up a three or a five, is __________

Ans. (11.00)

Sol. \[P(\text{at least 2 show 3 or 5}) = ^4C_2 \cdot \left(\frac{2}{6} \right)^2 \cdot \left(\frac{4}{6} \right)^2 + ^4C_3 \cdot \left(\frac{2}{6} \right)^3 \cdot \left(\frac{4}{6} \right) + ^4C_4 \cdot \left(\frac{2}{6} \right)^4 \]

\[= \frac{384 + 128 + 16}{6^4} = \frac{11}{27} \]

\(n = 27 \)

\[\therefore \text{ expectation of number of times} = np \]

\[= 27 \cdot \frac{11}{27} = 11 \]
Announcing

Rank Booster Part-2
An Exhaustive Online Preparation Course of 3 Weeks for JEE (Advanced) 2020

Course Features
- New specially designed 18 Advanced Worksheets
- Online Live Discussion class (6 per week) each of 1.5 hours for Advanced worksheets
- Exclusive Unit wise Work Sheets covering tough & important concepts
- Revision DPPs for more practice on daily basis
- Medium of Teaching and Content would be only English
- Gyan Sutra booklet: Specially designed package for quick revision of P, C & M

Course Brief
The Rank Booster Part-2 course is recommended for students aiming a top rank in JEE (Advanced) 2020. The course structure is tailored to better the chances through rigorous practice of 18 Advanced Worksheets and their exhaustive conceptual discussion. Also, unit wise worksheets for self practice to strengthen tough and important concepts.

Boosting Aspirations to Reality

Course Starts
07 Sept.

Course Duration
3 Weeks

Course Mode
Online

Course Fee (exclusive of GST)
₹5000/-

Limited Seats

Register on
www.resonance.ac.in

Toll Free: 1800 258 5555
7023003307, 7728890101 | 7340010333