JEE (Main) 2021

COMPUTER BASED TEST (CBT)
Memory Based Questions & Solutions

Date: 25 July, 2021 (SHIFT-2) | TIME: (3.00 p.m. to 6.00 p.m)
Duration: 3 Hours | Max. Marks: 300

SUBJECT: MATHEMATICS

Resonance Eduventures Ltd.
Ph: 9514400400, 9312020202, 9312032032
Fax: +91-120-4232302
Email: info@resonance.ac.in
Website: www.resonance.ac.in

RESULT: JEE (Advanced), JEE (Main), NEET
HIGHEST No. of Classroom Selections
1. If matrix \(P = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \) then the matrix \(P^5 \) is equal to

\[
\begin{pmatrix}
1 & 0 \\
50 & 1
\end{pmatrix}
\]

Ans. \((2) \)

Sol.
\[
P^1 = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}
\]
\[
P^2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}
\]
\[
P^3 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}
\]
\[
P^4 = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}
\]

Similarly...

2. If the first sample A of 100 items has the mean 15 and standard deviation 3 and second sample B has 150 items. If the combined mean and standard deviation of items of both the sample is 15.9 and \(\sqrt{13.44} \). Then the standard deviation of items of sample B is:
Ans. (4)
Sol. Combined mean = 15.6
\[\sum x_i = 100 \times 1.5 + 150 \times x_B \]
\[\frac{250}{15.6} = x_B \]
\[\Rightarrow x_B = 16 \] (mean of sample B)
Combined standard deviation = 13.44
\[\Rightarrow \text{combined variance (o^2)} = 13.44 \]

\[\sum x_i^2 = \frac{13.44}{250} \times 243.36 \]
\[\Rightarrow \sum x_i^2 = 64200 \] \[\ldots \ldots (1) \]

Resonance Eduventures Ltd.
Reg. Office & Corp. Office : CG Tower, A 46 & 52, IPA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: 014-27777777, 2777700 | FAX No.: +91-022-39757222
To Know more: www.resonance.ac.in | Email: students@resonance.ac.in | GST No.: 18601028277070C1 | CST No.: 3234029
Toll Free: 1800-258-5555

JEE MAIN-2021 | DATE: 25-07-2021 (SHIFT-2) | PAPER-1 | MEMORY BASED | MATHEMATICS

for sample A
\[9 = \frac{\sum x_i^2}{100} - 225 \]
\[\Rightarrow \sum x_i^2 = 23400 \]
\[\Rightarrow \sum x_i^2 - 62400 - 23400 = 40800 \]
standard deviation of sample B will be
\[n = 150 - \frac{16 \times 150}{256} \Rightarrow 4 \text{ Ans.} \]

3. The value of \(x \in \left[\frac{\pi}{4}, \frac{\pi}{4} \right] \) for which
\[\begin{align*}
\sin x & \cos x \\
\cos x & \sin x
\end{align*} = 0 \]
\[\begin{align*}
(1) & \frac{\pi}{4} \\
(2) & \frac{\pi}{8} \\
(3) & \frac{\pi}{4} \\
(4) & \frac{\pi}{8}
\end{align*} \]
Ans. (3)

Sol.
\[\begin{align*}
\sin x & \cos x \\
\cos x & \sin x
\end{align*} = 0 \]
\[\begin{align*}
\cos x & \cos x \\
\sin x & \sin x
\end{align*} = 0 \]
\[R_1 = R_2 + R_3 \]

\[\begin{align*}
\cos x & \cos x \\
\sin x & \sin x
\end{align*} = 0 \]
\[(\sin x - 2 \cos x) (\cos x + 2 \cos x) (\sin x - 2 \cos x) = 0 \]
\[\sin x = \cos x \text{ or } 2 \cos x \]
\[\tan x = \frac{1}{2} \text{ or } \tan x = -2 \]
\[\Rightarrow x = \frac{\pi}{4} \]
4. If \(\mathbf{a} \) and \(\mathbf{b} \) are two vectors such that \(|\mathbf{a}| = 5 \), \(|\mathbf{b}| = 2 \), then the value of \(|\mathbf{a} \times \mathbf{b}| \) is:

\[
|\mathbf{a} \times \mathbf{b}| = 3 \times 2 \times 5 \times \sin \theta
\]

\[
\sin \theta = \frac{3}{5}
\]

\[
|\mathbf{a} \times \mathbf{b}| = 3 \times 2 \times \frac{3}{5} = 6
\]

5. If function \(f(x) : A \rightarrow B \) and \(g(x) : B \rightarrow C \) are defined such that \((g \circ f)(x) \) exist then \(f(x) \) and \(g(x) \) are:

- (1) one-one and onto
- (2) many-one and onto
- (3) one-one and into
- (4) many-one and into

Answ. (1)

6. If \(a + b + c = 1 \), \(ab + bc + ca = 2 \) and \(abc = 3 \), then the value of \(a^3 + b^3 + c^3 \) is:

\[
\begin{align*}
(a + b + c)^3 &= 1^3 = 1 \\
\Rightarrow a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a) &= 1 \\
\Rightarrow a^3 + b^3 + c^3 + 3(ab + bc + ca) &= 1 \\
\Rightarrow a^3 + b^3 + c^3 &= 1 - 3(ab + bc + ca) \\
&= 1 - 3(2) \\
&= -5
\end{align*}
\]

Squaring of equation \((1)\),

\[
(a^3 + b^3 + c^3 + 2(ab + bc + ca)\sqrt[3]{abc})^2 = 4
\]

\[
\Rightarrow a^3 + b^3 + c^3 + 2(ab + bc + ca)\sqrt[3]{abc} = 4
\]

\[
\Rightarrow a^3 + b^3 + c^3 = 4 - 2(ab + bc + ca)\sqrt[3]{abc} = 4
\]

\[
\Rightarrow a^3 + b^3 + c^3 = 4 - 6 = -2
\]

Squaring of equation \((1)\),

\[
(a^3 + b^3 + c^3 + 2(ab + bc + ca)\sqrt[3]{abc})^2 = 9
\]

\[
\Rightarrow a^3 + b^3 + c^3 + 2(ab + bc + ca)\sqrt[3]{abc} = 9
\]

\[
\Rightarrow a^3 + b^3 + c^3 = 9 - 2(ab + bc + ca)\sqrt[3]{abc} = 9
\]

\[
\Rightarrow a^3 + b^3 + c^3 = 9 - 12 = -3
\]

7. Which of the following values is least correct then \((1 + \frac{1}{n})^{100} \)

Answ. (2)

Sol. Let \((1 + \frac{1}{n})^{100} = n \)

\[
\begin{align*}
\log_n (1 + \frac{1}{n}) &= \log_2 (1 + \frac{1}{n}) + \log_2 (1 + \frac{1}{n}) + \ldots \ldots \\
&= 1 + \frac{n(n-1)}{2} + \frac{n(n-1)(n-2)}{6n^2} + \ldots \ldots \\
&= \frac{1}{n} > 1 \\
\Rightarrow \frac{1}{n} > 1 \\
\Rightarrow \lim_{n \to \infty} \frac{1}{n} = a < 3.
\end{align*}
\]
8. If a rectangle is inscribed in an equilateral triangle of side \(\sqrt{2} \), then the square of maximum area of rectangle is:

\[\text{Ans. (3)} \]

\[\text{Sol.} \]

\[\text{Area of rectangle} = x \cdot h \quad \text{..... (i)} \]

From \(\triangle BDE \)

\[h = BE \tan 60 \]

\[h = \left(\frac{\sqrt{2}}{2} \right) \sqrt{3} \quad \text{..... (ii)} \]

So, area, \[A = \frac{\sqrt{3}}{2} \left(2\sqrt{2}x - x^2 \right) \]

For maxima, \[\frac{dA}{dx} = \frac{\sqrt{3}}{2} \left(2\sqrt{2} - 2x \right) = 0 \]

9. If the coefficients of \(x^7 \) and \(x^8 \) in the expansion of \(\left(2 + \frac{x}{3} \right)^n \) are equal then the value of \(n \) is:

\[\text{Ans. (3)} \]

\[\text{Sol.} \]

\[\left(2 + \frac{x}{3} \right)^n = \sum_{k=0}^{n} \binom{n}{k} 2^{n-k} \left(\frac{x}{3} \right)^k \]

Coefficient of \(x^7 \) = \(\binom{n}{7} 2^{n-7} \left(\frac{1}{3} \right)^7 \)

Coefficient of \(x^8 \) = \(\binom{n}{8} 2^{n-8} \left(\frac{1}{3} \right)^8 \)

10. If \(f(x) = \frac{P(x)}{x-2} \), and \(P(x) \) is a polynomial such that \(P'(x) \) is constant and \(P(3) = 9 \). If \(f(x) \) is continuous
11. The number of real solutions of the equation \(x^2 - |x| - 12 = 0 \) is:

 (1) 0
 (2) 1
 (3) 3
 (4) 2

Ans. (4)

Sol.

\[|x|^2 - |x| - 12 = 0 \]

\[|x|^2 - 3|x| - 12 = 0 \]

Case 1:

\[|x| = 4 \Rightarrow x = \pm 4 \]

Number of real solutions = 2

12. A coin is tossed n times. If the probability of getting at least one head is greater than 0.9, then the minimum value of n is:

 (1) 3
 (2) 5
 (3) 4
 (4) 2

Ans. (3)

\[0.9 > \left(1 - \frac{1}{2} \right)^n \Rightarrow n = 4 \]

13. Negation of the statement:

 "We will play football only if ground is not wet and there is no sunlight" is:

 (1) We will play football if ground is wet and there is no sunlight.
 (2) We will play football if ground is wet and there is sunlight.
 (3) There is no sunlight and ground is not wet and we will not play football.
 (4) There is sunlight or ground is wet and we will play football.

Ans. (4)

Sol.

\[p \lor q \rightarrow (\neg q \lor r) \]

Ans:

\[p \rightarrow (\neg q \lor r) \]
\[\text{Sol.} \quad \binom{n}{r} + \binom{n}{r+1} + \binom{n}{r+2} + \binom{n}{r+3} + \ldots \ldots \ldots (n+1) \text{ terms} = \sum_{i=0}^{r} (r+1)^i \binom{n}{i} \]

\[= 2 \sum_{i=0}^{r} \binom{n}{i} + \sum_{i=r+1}^{n} \binom{n}{i} \]

\[= 2n \cdot 2^{r-1} + 2^r = (n+1)2^r \]

15. Evaluate \[\int x \sqrt{x^2 + 1} \, dx \]

16. If \(P_n = P_{n+1} \) and \(C_n = C_{n+1} \), then the value of \(n \) is:

\[\text{Sol.} \quad C_n \rightarrow C_{n+1} = \frac{n!}{(n-r)!} \frac{r!}{(n-r-1)!} \]

\[\Rightarrow n - r = 1 \quad \ldots \ldots \quad (2) \]

Solving (1) & (2) \[n + 1 = 2(n - 1) \quad \Rightarrow n = 3 \]

17. Value of \[\sum_{r=0}^{10} \binom{10}{r} \cdot (-1)^r \cdot \frac{r}{2} \] is. (Where \([\cdot]\) represent greatest integer function)

\[\text{Ans.} \quad (4) \]

18. Evaluate \[\sum_{n=0}^{20} \left(\frac{1}{24} \right)^n \]

\[(1) \sqrt{6} - \sqrt{3} + \sqrt{2} + 2 \quad (2) \sqrt{6} + \sqrt{3} - \sqrt{2} - 2 \quad (3) \sqrt{6} + \sqrt{3} + \sqrt{2} - 2 \quad (4) \sqrt{6} + \sqrt{3} + \sqrt{2} + 2 \]

\[\text{Ans.} \quad (4) \]
10. If two lines $L_1 = \frac{x-k}{1} = \frac{y-2}{2} = \frac{z-3}{1}$ and $L_2 = \frac{x+1}{3} = \frac{y+2}{2} = \frac{z+3}{1}$ are coplanar, then the value of k is:

Ans. (2) \[k = 1, 2, -2, 3, 3 \]

20. If $y = f(x)$ is the solution of differential equation $\frac{xdy}{y} = x \cos x \, dx$ and $f(x) = 0$ then $f\left(\frac{x}{2}\right)$ is:

Ans. (2) $f\left(\frac{x}{2}\right) = \frac{x}{2} \cos x + \cos x + c$
21. If three vectors \(\vec{a} + \vec{b} \), \(\vec{b} + \vec{c} \) and \(\vec{a} + \vec{c} \) are coplanar then

\[
\begin{align*}
(1) \; a^2 &= bc \\
(2) \; b^2 &= ac \\
(3) \; c^2 &= ab \\
(4) \; ab &= c
\end{align*}
\]

Ans. (2)

Sol.

\[
\begin{align*}
1 &= 0 + (ab - ac) \\
0 &= ab
\end{align*}
\]

22. If \(\vec{x} \) and \(\vec{y} \) are two vectors such that \(|\vec{x} + \vec{y}| = |\vec{x} - \vec{y}| \), then the angle between \(\vec{x} \) and \(\vec{y} \)

\[
\begin{align*}
\cos \theta &= \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|} \\
\theta &= \cos^{-1}\left(\frac{1 - n^2}{n^2 + 1}\right)
\end{align*}
\]

23. If combined equation of line \(y = p(x) \) and \(y = q(x) \) can be written as \((y - p(x))(y - q(x)) = 0 \) then angle bisector of \(x^2 - 4xy - 8y^2 = 0 \) is:

\[
\begin{align*}
(1) \; x^2 + 3xy + y^2 &= 0 \\
(2) \; x^2 + 3xy - y^2 &= 0
\end{align*}
\]

Ans. (2)

Sol. Equation of angle bisector of homogeneous equation of pair of straight line \(ax^2 + 2hxy + by^2 = 0 \) is

\[
\frac{x^2 - y^2}{a - h} = \frac{xy}{h}
\]

for \(x^2 - 4xy - 8y^2 = 0 \)

\[
\begin{align*}
a &= 1, \; h = -2, \; b = -5
\end{align*}
\]

so, equation of angle bisector is

\[
\frac{x^2 - y^2}{1 - (-5)} = \frac{xy}{-2}
\]

\[
\frac{x^2 - y^2}{6} = \frac{xy}{-2}
\]

so, combined equation of angle bisector is \(x^2 + 3xy - y^2 = 0 \)

24. Equation of a circle is \(\Re(z^2) = 2(\Im(z))^2 + 2\Re(z) = 0 \) where \(z = x + iy \) and a line passes through the vertex of parabola \(x^2 = 6x + y + 13 = 0 \) and the centre of circle, then \(y \) intercept of the line is:

\[
\begin{align*}
(1) \; -2 \\
(2) \; -1 \\
(3) \; 2 \\
(4) \; 1
\end{align*}
\]

Ans. (2)

So, \(z^2 = x^2 - y^2 + i2xy \)

Now \(x^2 - y^2 + 2x^2 + 2x = 0 \)

\[
\begin{align*}
x^2 + y^2 + 2x = 0 & \Rightarrow \text{centre} = (-1, 0) \quad \text{and} \quad x^2 - 6x + y + 13 = 0 \\
(x+3)^2 &= -(y+4)
\end{align*}
\]
Equation of line is \((y-0) = \frac{-4-0}{3+1} (x+1) \) \(\Rightarrow 4y = -4(x+1) \)

\[x + y + 1 = 0 \Rightarrow \frac{x}{-1} + \frac{y}{-1} = 1 \]

25. \(f(x) = \begin{cases}
5x + 1 & ; x < 2 \\
5 & ; x = 2 \\
\int_0^1 (5 - 1 - t) \, dt & ; x > 2
\end{cases} \)

(1) \(f(x) \) is differentiable \(\forall x \in \mathbb{R} \)

(3) \(f(x) \) is continuous at \(x = 2 \) but not differentiable at \(x = 1 \).

(4) \(f(x) \) is neither continuous nor differentiable at \(x = 2 \).

\textbf{Ans.} \(2 \)

\textbf{Sol.}

LHL = \(\lim_{x \to 2} (5x - 1) = 11 \)

RHL = \(\lim_{x \to 2} \int_0^1 (5 - 1 - t) \, dt = \int_0^1 (5 - 1 - t) \, dt = 11 \)

\(f(2) = 11 \)

So, \(f(x) \) is continuous at \(x = 2 \)

LHD at \(x = 2 \) is \(\frac{d}{dx} (5x + 1) \bigg|_{x=2} = 5 \)

RHD at \(x = 2 \) is \(\frac{d}{dx} \int_0^1 (5 - 1 - t) \, dt \bigg|_{x=2} = 6 \)