JEE (Main) 2020

COMPUTER BASED TEST (CBT)

Questions & Solutions

Date: 04 September, 2020 (SHIFT-2) | TIME: (03.00 p.m. to 06.00 p.m)

Duration: 3 Hours | Max. Marks: 300

SUBJECT: MATHEMATICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222
To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029
Toll Free: 1800 258 5555 | 7340010333

This solution was downloaded from Resonance JEE (MAIN) 2020 Solution portal
Many Dreamers... Many Achievers...

ADMISSION OPEN (2020-21)

For Classroom Programs*

TARGET
JEE (Main+Advanced) 2021
COURSE
VIJAY

TARGET
JEE (Main) 2021
COURSE
AJAY

TARGET
JEE (Main+Advanced) 2021
COURSE
IVISHESH

Scholarship upto 90% on JEE (Main) 2020 %ile Score

Salient features

Digital Learning

For Class 7th to 12th +

*Presently classes would be offered Online and Offline classes would resume as per Government Guidelines.

Toll Free: 1800 258 5555 | Visit us: www.resonance.ac.in
PART : MATHEMATICS

SECTION – 1 : (Maximum Marks : 80)

Straight Objective Type (सीधे व्याख्यात्मक प्रकार)

This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which Only One is correct.

1. Let \(f : (0, \infty) \to (0, \infty) \) be a differentiable function such that \(f(1) = e \) and \(\lim_{t \to x} \frac{t^2f^2(x) - x^2f^2(t)}{t - x} = 0 \). If \(f(x) = \frac{1}{e} \), then \(x \) is equal to:

 (1) \(\frac{1}{e} \)
 (2) \(2e \)
 (3) \(\frac{1}{2e} \)
 (4) \(e \)

 Ans. (1)

 Sol.
 \[
 \lim_{t \to x} \frac{t^2f^2(x) - x^2f^2(t)}{t - x} = 0

 \text{using L'Hospital}

 \lim_{t \to x} \frac{2tf^2(x) - 2xf(t)f'(t)}{1} = 0

 x^2 f(x) f'(x) - 2x f(x) f'(x) = 0

 2x f(x) [x f'(x) - f(x)] = 0

 f(x) \neq 0 \text{ so } x f'(x) = f(x)

 dx

 x dy = y

 \frac{1}{y} dy = \frac{1}{x} dx

 \int ny = \int nx + \int nc

 y = cx \implies f(x) = cx

 \text{Now } f(1) = c = e

 \text{so } f(x) = ex

 \text{now } f(x) = 1

 ex = 1 \implies x = \frac{1}{e}

2. Contrapositive of the statement:

 ‘If a function \(f \) is differentiable at \(a \), then it is also continuous at \(a \), is:

 (1) If a function \(f \) is not continuous at \(a \), then it is not differentiable at \(a \).
 (2) If a function \(f \) is continuous at \(a \), then it is differentiable at \(a \).
 (3) If a function \(f \) is not continuous at \(a \), then it is differentiable at \(a \).
 (4) If a function \(f \) is continuous at \(a \), then it is not differentiable at \(a \).

 Ans. (1)

 Sol. Contrapositive of \(p \Rightarrow q \) is \(\neg q \Rightarrow \neg p \)
3. The solution of the differential equation \(\frac{dy}{dx} - \frac{y + 3x}{\log_e(y + 3x)} + 3 = 0 \) is

(where C is a constant of integration)

(1) \(x - 2\log_e(y + 3x) = C \)

(2) \(x - \log_e(y + 3x) = C \)

(3) \(y + 3x - \frac{1}{2} (\log_e x^2) = C \)

(4) \(y - \frac{1}{2} \left(\log_e(y + 3x) \right)^2 = C \)

Ans. (4)

Sol. \(\frac{dy}{dx} - \frac{y + 3x}{\ln(y + 3x)} + 3 = 0 \)

\(\frac{dy}{dx} + 3 = \frac{y + 3x}{\ln(y + 3x)} \)

\(\frac{d}{dx} (y + 3x) = \frac{y + 3x}{\ln(y + 3x)} \)

\(\int \frac{\ln(y + 3x)}{y + 3x} \, dy = \int dx \)

Let \(\ln(y + 3x) = t \)

\(\int \frac{1}{y + 3x} \, dt = \int dx \)

\(\frac{t^2}{2} = x + c \)

\(\left(\ln(y + 3x) \right)^2 = x + c \)

4. If for some positive integer \(n \), the coefficients of three consecutive terms in the binomial expansion of \((1 + x)^n \) are in the ratio 5 : 10 : 14, then the largest coefficient in the expansion is :

(1) 330

(2) 252

(3) 792

(4) 462

Ans. (4)

Sol. Let three consecutive term be \(T_r, T_{r+1}, T_{r+2} \)

Hence \(\frac{T_r}{T_{r+1}} = \frac{5}{10} \) and \(\frac{T_{r+1}}{T_{r+2}} = \frac{10}{14} \)

\(\frac{T_{r+1}}{T_r} = 2 \)

\(\frac{n-5}{C_r} = \frac{n-5}{C_{r+1}} = \frac{5}{7} \)

\(\frac{n-5}{C_{r-1}} = 2 \)

\(\frac{n-5}{C_r} = \frac{n-5}{C_{r+1}} = \frac{7}{5} \)

\(\frac{(n+5) - r + 1}{r} = 2 \)

\(\frac{(n+5) - (r+1) + 1}{r + 1} = \frac{7}{5} \)

\(n - r + 6 = 2r \)

\(n - 3r + 6 = 0 \) \(\ldots \ldots \) (i)

\(5n - 5r + 25 = 7r + 7 \)

\(5n - 12r + 18 = 0 \) \(\ldots \ldots \) (ii)
5. The circle passing through the intersection of the circles, \(x^2 + y^2 - 6x = 0 \) and \(x^2 + y^2 - 4y = 0 \), having its centre on the line, \(2x - 3y + 12 = 0 \), also passes through the point:

(1) \((1, -3)\) (2) \((-1, 3)\) (3) \((-3, 6)\) (4) \((-3, 1)\)

Ans. (3)

Sol. By family of circle, passing through intersection of given circle will be member of

\[S_1 + \lambda S_2 = 0 \] family \((\lambda \neq 1) \)

\[(x^2 + y^2 - 6x) + \lambda(x^2 + y^2 - 4y) = 0 \]

\[(\lambda + 1)2 + (\lambda + 1)y^2 - 6x - 4\lambda y = 0 \]

\[x^2 + y^2 - \frac{6}{\lambda + 1}x - \frac{4\lambda}{\lambda + 1}y = 0 \]

Centre \(\left(\frac{3}{\lambda + 1}, \frac{2\lambda}{\lambda + 1} \right) \)

Centre lies on \(2x - 3y + 12 = 0 \)

\[2 \left(\frac{3}{\lambda + 1} \right) - 3 \left(\frac{2\lambda}{\lambda + 1} \right) + 12 = 0 \]

\[6\lambda + 18 = 0 \]

\[\lambda = -3 \]

Circle \(x^2 + y^2 + 3x - 6y = 0 \)

6. In a game two players A and B take turns in throwing a pair of fair dice starting with player A and total of scores on the two dice, in each throw is noted. A wins the game if he throws a total of 6 before B throws a total of 7 and B wins the game if he throws a total of 7 before A throws a total of six. The game stops as soon as either of the players wins. The probability of A winning the game is:

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{5}{6})</td>
<td>(\frac{5}{31})</td>
<td>(\frac{5}{31})</td>
<td>(\frac{31}{61})</td>
</tr>
</tbody>
</table>

Ans. (1)

Sol. sum 6 \(\rightarrow (1, 5), (5, 1), (3, 3), (2, 4), (4, 2) \)

sum 4 \(\rightarrow (1, 6), (6, 1), (5, 2), (2, 5), (3, 4), (4, 3) \)

\[P(A \text{ wins}) = P(A) + P(\overline{A}).P(\overline{B}).P(A) + P(\overline{A}).P(\overline{B}).P(\overline{A}) + \ldots \]

this is infinite G.P. with common ratio \(P(\overline{A}) \times P(\overline{B}) \)

Probability of A wins = \[
= \frac{\frac{5}{36}}{1 - P(A) \times P(\overline{B})}
= \frac{\frac{5}{36}}{1 - \frac{30}{61}} = \frac{30}{61}
\]
7. The angle of elevation of a cloud C from a point P, 200 m above a still take is 30°. If the angle of depression of the image of C in the lake from the point P is 60°, then PC (in m) is equal to

(1) 100 (2) 400 $\sqrt{3}$ (3) 200 $\sqrt{3}$ (4) 400

Ans. (4)

Sol.

\[\tan 30° = \frac{x}{\sqrt{3}} \quad \Rightarrow \quad y = \sqrt{3}x \quad \text{and} \quad \tan 60° = \frac{x + 400}{y} \]

\[x + 400 = 3x \]
\[2x = 400, \quad x = 200 \]
\[\sin 30° = \frac{200}{PC} \quad \Rightarrow \quad PC = 400 \]

8. The function \(f(x) = \begin{cases} \frac{\pi}{4} + \tan^{-1} x, & |x| \leq 1 \\ \frac{1}{2}(|x|-1), & |x| > 1 \end{cases} \) is:

(1) continuous on \(\mathbb{R} - \{-1, 1\} \) and differentiable on \(\mathbb{R} - \{-1, 1\} \).

(2) both continuous and differentiable on \(\mathbb{R} - \{-1\} \).

(3) both continuous and differentiable on \(\mathbb{R} - \{1\} \).

(4) continuous on \(\mathbb{R} - \{1\} \) and differentiable on \(\mathbb{R} - \{-1, 1\} \).

Ans. (4)
Sol. \(f(x) = \begin{cases} \frac{\pi}{4} + \tan^{-1} x, & \text{if } |x| \leq 1 \\ \frac{1}{2}(|x| - 1), & \text{if } |x| > 1 \end{cases} \)

Graph of \(f(x) \) is

\(f(x) \) is continuous on \(\mathbb{R} - \{1\} \)
\(f(x) \) is differentiable on \(\mathbb{R} - \{-1, 1\} \)

9. Suppose the vectors \(x_1, x_2 \) and \(x_3 \) are the solutions of the system of linear equations, \(Ax = b \) when the vector \(b \) on the right side is equal to \(b_1, b_2 \) and \(b_3 \) respectively. If

\[
x_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad x_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad b_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}, \quad b_3 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix},
\]

then the determinant of \(A \) is equal of \(A \) is equal to:

(1) \(\frac{3}{2} \) \(\frac{3}{2} \)
(2) \(4 \)
(3) \(\frac{1}{2} \)
(4) \(2 \)

\[\text{Ans. (4)} \]

Sol. Let \(A = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{bmatrix} \)

\[
Ax_1 = b_1 \Rightarrow \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
\]

\(\alpha_1 + \alpha_2 + \alpha_3 = 1 \)
\(\beta_1 + \beta_2 + \beta_3 = 0 \)
\(\gamma_1 + \gamma_2 + \gamma_3 = 0 \)

similar \(2\alpha_2 + \alpha_3 = 0 \) \(\alpha_3 = 0 \)
\(2\beta_2 + \beta_3 = 2 \) \(\beta_3 = 0 \)
\(2\gamma_2 + \gamma_3 = 0 \) \(\gamma_3 = 2 \)

\(\therefore \alpha_2 = 0, \beta_2 = 1, \gamma_2 = -1 \)
\(\alpha_1 = 1, \beta_1 = -1, \gamma_1 = -1 \)

\[A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix} \]

\[|A| = 2 \]
10. Let \(a_1, a_2, \ldots, a_n \) be a given A.P. whose common difference is an integer and
\[S_n = a_1 + a_2 + \ldots + a_n. \] If \(a_1 = 1, a_{15} = 300 \) and \(15 \leq n \leq 50 \), then the ordered pair \((S_{n-4}, a_{n-4})\) is equal to:

(1) \((2490, 248)\) \quad (2) \((2490, 249)\) \quad (3) \((2490, 249)\) \quad (4) \((2480, 248)\)

Ans. (1)

Sol.

\[a_n = a_1 + (n-1)d \]
\[\Rightarrow d = \frac{299}{(n-1)} = \frac{13 \times 23}{(n-1)} \text{ integer} \]

so \(n-1 = \pm 13, \pm 23, \pm 299, \pm 1 \)
\[\Rightarrow n = 14, -12, 24, -22, 300, -298, 2, 0 \]

But \(n \in [15, 50] \) \(\Rightarrow n = 24 \) \(\Rightarrow d = 13 \)

Hence \(S_{n-4} = S_{20} = \frac{20}{2} [2(1) + (20 - 1)(13)] = 10[2 + 247] = 2490 \)

\[a_{n-4} = a_{20} = a_1 + 19d \]
\[= 1 + 19 \times 13 \]
\[= 247 \]
\[= 248 \]

11. Let \(\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^{n} Y_i = T \), where each \(X_i \) contains 10 elements and each \(Y_i \) contains 5 elements. If each element of the set \(T \) is an element of exactly 20 sets \(X_i \)'s and exactly 6 sets \(Y_i \)'s then \(n \) is equal to:

(1) 45 \quad (2) 15 \quad (3) 30 \quad (4) 50

Ans. (3)

Sol.

\[\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^{n} Y_i = Z \]
\[\Rightarrow \frac{10 \times 50}{20} = \frac{5n}{6} \]
\[\Rightarrow n = 30 \]

12. The area (in sq. units) of the largest rectangle \(ABCD \) whose vertices \(A \) and \(B \) lie on the \(x \)-axis and vertices \(C \) and \(D \) lie on the parabola, \(y = x^2 - 1 \) below the \(x \)-axis, is:

(1) \(\frac{1}{3\sqrt{3}} \) \quad (2) \(\frac{4}{3} \) \quad (3) \(\frac{4}{3\sqrt{3}} \) \quad (4) \(\frac{2}{3\sqrt{3}} \)

Ans. (3)

Sol.

\[A(\alpha, 0), \beta(-\alpha, 0) \]
\[\Rightarrow D(\alpha, \alpha^2 - 1) \]

Area \(ABCD = (AB)(AD) \)
\[\Rightarrow S = (2\alpha)(1-\alpha^2) = 2\alpha - 2\alpha^3 \]
\[\frac{ds}{d\alpha} = 2 - 6\alpha^2 = 0 \Rightarrow \alpha^2 = \frac{1}{3} \Rightarrow \alpha = \frac{1}{\sqrt{3}} \]

Area \(= 2\alpha - 2\alpha^3 \)
\[= \frac{2}{\sqrt{3}} \]
13. Let \(x = 4 \) be a directrix to an ellipse whose centre is at the origin and its eccentricity is \(\frac{1}{2} \). If \(P(1, \beta) \), \(\beta > 0 \) is a point on this ellipse, then the equation of the normal to it at \(P \) is

\[
(1) \quad 7x - 4y = 1 \quad (2) \quad 4x - 2y = 1 \quad (3) \quad 8x - 2y = 5 \quad (4) \quad 4x - 3y = 2
\]

Ans. \((2) \)

Sol.
\[
a = 4 \Rightarrow a = 4e \Rightarrow a = 2
\]
\[
b^2 = a^2 (1 - e^2) = 3
\]
\[
(1, \beta) \text{ lies on } \frac{x^2}{4} + \frac{y^2}{\frac{3}{4}} = 1 \Rightarrow \frac{1}{4} + \frac{\beta^2}{\frac{3}{4}} = 1 \Rightarrow \beta^2 = \frac{9}{16} \Rightarrow \beta = \frac{3}{2} \quad (\therefore \beta > 0)
\]

Normal at \((1, \beta) \) is
\[
\frac{a^2x}{1} - \frac{b^2y}{\beta} = a^2 - b^2 \Rightarrow 4x - \frac{3y}{\beta} = 1
\]

so equation of normal is \(4x - 2y = 1 \)

14. The distance of the point \((1, -2, 3) \) from the plane \(x - y + z = 5 \) measured parallel to the line

\[
\frac{x}{2} = \frac{y}{3} = \frac{z}{-6} \text{ is}:
\]

(1) \(\frac{1}{7} \) \quad (2) \(\frac{7}{5} \) \quad (3) \(1 \) \quad (4) \(\frac{7}{5} \)

Ans. \((3) \)

Sol.
\[
\frac{x}{2} = \frac{y}{3} = \frac{z}{-6} \quad \text{Let } Q \equiv (2\lambda + 1, 3\lambda - 2, -6\lambda + 3)
\]

\(Q \) lies on \(x - y + z = 5 \)
\[
\Rightarrow (2\lambda + 1) - (3\lambda - 2) + (-6\lambda + 3) = 5 \Rightarrow \lambda = \frac{1}{7} \Rightarrow Q \equiv \left(\frac{9}{7}, \frac{11}{7}, \frac{15}{7} \right)
\]

\[
PQ = \sqrt{\left(1 - \frac{9}{7}\right)^2 + \left(-2 + \frac{11}{7}\right)^2 + \left(3 - \frac{15}{7}\right)^2} = 1
\]
15. If the perpendicular bisector of the line segment joining the points P(1, 4) and Q(k, 3) has y-intercept equal to -4, then a value of k is:

(1) \(\sqrt{15}\)
(2) -4
(3) -2
(4) \(\sqrt{14}\)

Ans. (2)

Sol. Mid point PQ \(\left(\frac{k+1}{2}, \frac{7}{2}\right)\)

and slope of PQ = \(-\frac{1}{1-k}\)

so equation of perpendicular bisector of PQ

\(y - \frac{7}{2} = (k-1) \left(x - \frac{k+1}{2}\right)\)(1)

Now it's y intercept = -4

so equation (1) satisfy (0, -4)

\[\Rightarrow -\frac{15}{2} = -\left(\frac{k^2-1}{2}\right)\]

\[k^2 = 16 \Rightarrow k = 4\]

16. The integral \(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3 x \cdot \sin^2 3x(2\sec^2 x \sin^2 3x + 3\tan x \sin 6x)dx\) is equal to:

(1) \(-\frac{1}{9}\)
(2) \(\frac{9}{2}\)
(3) \(-\frac{1}{18}\)
(4) \(\frac{7}{18}\)

Ans. (3)

Sol.
\[
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{d}{dx} \left(\tan^4 x \cdot \sin^2 3x + \frac{d}{dx} \left(\sin^4 3x\right)\right) dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{2} \cdot \frac{d}{dx} \left(\tan^4 x \cdot \sin^4 3x\right) dx
\]

\[
\left[\tan^4 x \cdot \sin^4 3x\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \left[\left(3^{\frac{1}{4}} \cdot \frac{1}{\sqrt{3}}\right)\right] - \left[\left(\frac{1}{3}\right)^{\frac{1}{4}} \cdot \frac{1}{\sqrt{3}}\right] = -\frac{1}{2} \cdot \frac{9}{2} = -\frac{1}{2} \cdot \frac{9}{18}
\]

17. The minimum value of \(2^\sin x + 2^\cos x\) is:

(1) \(2^{-1+\frac{1}{\sqrt{2}}}\)
(2) \(2^{-1+\frac{\sqrt{2}}{2}}\)
(3) \(2^{-1-\frac{\sqrt{2}}{2}}\)
(4) \(2^\frac{1}{\sqrt{2}}\)

Ans. (4)

Sol. Using A.M. \(\geq\) G.M.

\[
\frac{2^\sin x + 2^\cos x}{2} \geq \sqrt{2^\sin x \cdot 2^\cos x}
\]

\[
\frac{2^\sin x + 2^\cos x}{2} \geq 2^{\sin x + \cos x}\]

...(i)

Now \(-\sqrt{2} \leq \sin x + \cos x = \sqrt{2}\)
so \(-\frac{1}{\sqrt{2}} \leq \frac{\sin x + \cos x}{2} \leq \frac{1}{\sqrt{2}}\)

Minimum value of \(\frac{\sin x + \cos x}{2} = 2 \frac{1}{\sqrt{2}}\)

so by (i)

Minimum value of \(\frac{2\sin x + 2\cos x}{2} = 2 \frac{1}{\sqrt{2}}\)

Minimum value of \(2^\sin x + 2^\cos x = 2 \sqrt{2} + 2 = 2^{1+\frac{1}{\sqrt{2}}}\)

18. If a and b are real numbers such that \((2 + \alpha)^4 = a + b\alpha\), where \(\alpha = \frac{-1+i\sqrt{3}}{2}\) then a + b is equal to:

(1) 33 (2) 24 (3) 9 (4) 57

Ans. (3)

Sol. \((2 + \alpha)^4 = a + b\alpha\)

\((4 + \alpha^2 + 4\alpha)^2 = a + b\alpha \therefore 1 + \alpha = -\alpha^2\)

\(9\alpha^4 = a + b\alpha\)

\(9\alpha = a + b\alpha \Rightarrow a = 0, b = 9 \Rightarrow a + b = 9\)

19. Let \(\lambda = 0\) be in R. If \(\alpha\) and \(\beta\) are the roots of the equation, \(x^2 - x + 2\lambda = 0\) and \(\alpha\) and \(\gamma\) are the roots of the equation, \(3x^2 - 10x + 27\lambda = 0\), then \(\frac{\beta \gamma}{\lambda}\) is equal to:

(1) 27 (2) 36 (3) 9 (4) 18

Ans. (4)

Sol. Given \(3\alpha^2 - 10\alpha + 27\lambda = 0\)(i)

\(3\alpha^2 - 3\alpha + 6\lambda = 0\)(ii)

Subtract \(-7\alpha + 21\lambda = 0\)

\(3\lambda = \alpha\)

By (ii) \(9\alpha^2 - 3\alpha + 2\lambda = 0\)

\(\Rightarrow \lambda = 0, \frac{1}{9}\)

\(\therefore\) given equation are \(x^2 - x + \frac{2}{9} = 0\) and \(3x^2 - 10x + 3 = 0\)

\(\therefore \alpha = \frac{1}{3}, \beta = \frac{2}{3}, \alpha = \frac{1}{3}, \gamma = 3\)

\(\therefore \frac{\beta \gamma}{\lambda} = \frac{\frac{2}{3} \cdot 3}{\frac{1}{9}} = 18\)
20. If the system of equations
\[\begin{align*}
x + y + z &= 2 \\
2x + 4y - z &= 6 \\
3x + 2y + \lambda z &= \mu
\end{align*}\]
(1) \(\lambda + 2\mu = 14\)
(2) \(2\lambda - \mu = 5\)
(3) \(2\lambda + \mu = 14\)
(4) \(\lambda - 2\mu = -5\)

\[\text{Ans. (3)}\]

\[\text{Sol. } D = 0 \Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & -1 \\ 3 & 2 & \lambda \end{vmatrix} = 0 \Rightarrow \lambda = \frac{9}{2} p\]

\[D_3 = 0 \Rightarrow \begin{vmatrix} 1 & 1 & 2 \\ 2 & 4 & 6 \\ 3 & 2 & \mu \end{vmatrix} = 0 \Rightarrow \mu = 5\]

SECTION – 2 : (Maximum Marks : 20)

- This section contains **FIVE (05)** questions. The answer to each question is **NUMERICAL VALUE** with two digit integer and decimal up to one digit.
- If the numerical value has more than two decimal places **truncate/round-off** the value up to **TWO** decimal places.
 - **Full Marks : +4** If ONLY the correct option is chosen.
 - **Zero Marks : 0** In all other cases

खंड 2 (अंकक अंक : 20)

- इस खंड में पौंड (05) प्रश्न है। प्रत्येक प्रश्न का उत्तर संख्यात्मक मान (NUMERICAL VALUE) है, जो हि–अंकीय पूर्णाक तथा दशमलव एकल–अंकन में है।
- यदि संख्यात्मक मान में दो से अधिक दशमलव स्थान है, तो संख्यात्मक मान को दशमलव के दो स्थानों तक **ट्रांस्फर/राउंड ऑफ** (truncate/round-off) करें।
- **अंकन योजना :**
 - पूर्ण अंक : +4 यदि निर्दिष्ट सही फिक्स्ट ही चुना गया है।
 - शून्य अंक : 0 अन्य सभी परिस्थितियों में।

21. Let PO be a diameter of the circle \(x^2 + y^2 = 9\). If \(\alpha\) and \(\beta\) are the lengths of the perpendiculars from P and Q on the straight line, \(x + y = 2\) respectively, then the maximum value of \(\alpha\beta\) is ……

Ans. 7

Sol. Let \(P(3\cos\theta, 3\sin\theta) \colon Q(-3\cos\theta, -3\sin\theta)\)
given line \(x + y - 2 = 0\)
\[\alpha = \frac{|3\cos\theta + 3\sin\theta - 2|}{\sqrt{2}}\]
\[\beta = \frac{|-3\cos\theta - 3\sin\theta - 2|}{\sqrt{2}}\]
\[\therefore \alpha\beta = \frac{|(3\cos\theta + 3\sin\theta - 2)(3\cos\theta + 3\sin\theta + 2)|}{2} = \frac{9(1 + \sin 2\theta) - 4}{2}\]

\[\therefore \text{maximum } \alpha\beta = 7\]
22. If the variance of the following frequency distribution:

<p>|</p>
<table>
<thead>
<tr>
<th>Class</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-20</td>
<td>2</td>
</tr>
<tr>
<td>20-30</td>
<td>x</td>
</tr>
<tr>
<td>30-40</td>
<td>2</td>
</tr>
</tbody>
</table>

 is 50, then x is equal to ……

 Ans. 4

 Sol.

 \[x = \frac{\sum f_i \cdot x_i}{\sum f_i} = \frac{30 + 25x + 70}{4 + x} = 25 \]

 \[\sigma^2 = 50 = \frac{\sum f_i \cdot x_i^2}{\sum f_i} - (\bar{x})^2 \]

 \[50 = \frac{450 + 625x + 2450}{4 + x} - (25)^2 \]

 \[50 = \frac{2900 + 625x}{4 + x} - 625 \Rightarrow 675 (4 + x) = 2900 + 625 x \Rightarrow 50x = 200 \Rightarrow x = 4 \]

23. A test consists of 6 multiple choice questions, each having 4 alternative answers of which only one is correct. The number of ways, in which a candidate answers all six questions such that exactly four of the answers are correct, is ……

 Ans. 135

 Sol. No. of ways of giving wrong answer = 3

 required no. of ways = \[6C_4 (1)^4 \times (3)^2 \]

 = 15(9) = 135

24. Let \([x] \) and \(\{x\} \) denote the fractional part of \(x \) and the greatest integer \(\leq x \) respectively of a real number \(x \).

 if \[\int_0^n \{x\} \, dx \text{, } \int_0^n [x] \, dx \text{ and } 10(n^2 - n) \text{, } (n \in \mathbb{N}, n > 1) \]

 are three consecutive terms of a G.P. then \(n \) is equal to ……

 Ans. 21

 Sol.

 \[\int_0^n \{x\} \, dx = n \int_0^1 x \, dx = n \left(\frac{x^2}{2} \right)_0^n = \frac{n}{2} \]

 and \[\int_0^n [x] \, dx = \int_0^n (x - \{x\}) \, dx = \left(\frac{x^2}{2} \right)_0^n - \int_0^n \{x\} \, dx = \frac{n^2}{2} - \frac{n}{2} \]

 now \[\frac{n^2}{2} - \frac{n}{2} \text{ and } 10(n^2 - n) \text{ are in Geometric progression} \]

 \[(\frac{n^2}{2} - \frac{n}{2})^2 = \frac{n}{2} \cdot 10(n^2 - n) \]

 \[\Rightarrow \frac{n^2(n - 1)^2}{4} = 5.n^2(n - 1) \]

 \[\Rightarrow n - 1 = 20 \Rightarrow n = 21 \]
25. IF \(\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} \), then the value of \(|i \times (\vec{a} \times i)|^2 + |j \times (\vec{a} \times j)|^2 + |k \times (\vec{a} \times k)|^2 \) is equal to:

Ans. 18.

Sol. Let \(\vec{a} = x\hat{i} + y\hat{j} + z\hat{k} \)

\[
i \times (\vec{a} \times i) = (i \times i)\vec{a} - (i \times i)\vec{a} = y\hat{j} + z\hat{k}
\]

Similarly \(j \times (\vec{a} \times j) = x\hat{i} + z\hat{k} \) and \(k \times (\vec{a} \times k) = x\hat{i} + y\hat{k} \)

\[
|i \times (\vec{a} \times i)|^2 + |j \times (\vec{a} \times j)|^2 + |k \times (\vec{a} \times k)|^2
\]

\[
|x\hat{j} + z\hat{k}|^2 + |x\hat{i} + z\hat{k}|^2 + |x\hat{i} + y\hat{k}|^2 = 2|a|^2 = 2(9) = 18
\]
Announcing

Rank Booster Part-2
An Exhaustive Online Preparation Course of 3 Weeks for JEE (Advanced) 2020

Course Features

- New specially designed 18 Advanced Worksheets
- Online Live Discussion class (6 per week) each of 1.5 hours for Advanced worksheets
- Exclusive Unitwise Work Sheets covering tough & important concepts
- Revision DPPs for more practice on daily basis
- Medium of Teaching and Content would be only English
- Gyan Sutra booklet: Specially designed package for quick revision of P, C & M

Course Brief

The Rank Booster Part-2 course is recommended for students aiming a top rank in JEE (Advanced) 2020. The course structure is tailored to better the chances through rigorous practice of 18 Advanced Worksheets and their exhaustive conceptual discussion. Also, unit wise worksheets for self practice to strengthen tough and important concepts.

Boosting Aspirations to Reality

Course Starts
07 Sept.

Course Duration
3 Weeks

Course Mode
Online

Course Fee
(Exclusive of GST)
₹5000/-
Non Refundable

Register on
www.resonance.ac.in

Toll Free: 1800 258 5555
☎ 7023003307, 7728890101 | 📞 7340010333