JEE-Main-29-06-2022-Shift-2 (Memory Based)

Physics

Question: Two point charge each of same magnitude 'Q' are placed as shown in figure determine distance from O at equatorial axis where force on q is maximum.

Options:

(a)
$$\frac{d}{\sqrt{3}}$$

(b)
$$\frac{d}{\sqrt{2}}$$

(c)
$$\frac{d}{\sqrt{5}}$$

(d)
$$\frac{d}{\sqrt{7}}$$

Answer: (b)

Solution:

Force on q is

$$F = qE$$

$$\Rightarrow F = q \frac{2kQx}{\left(x^2 + d^2\right)^{\frac{3}{2}}}$$

for F = Fmax.

$$E = 2E_0 \cos \theta$$

$$=\frac{2kQx}{\left(x^2+d^2\right)^{\frac{3}{2}}}$$

$$\Rightarrow \frac{d}{dx} \left[\frac{2x}{\left(x^2 + d^2\right)^{\frac{3}{2}}} \right] = 0 \Rightarrow x = \frac{d}{\sqrt{2}}$$

Question: A gas is expanded from volume ' V_1 ' to ' V_2 ' by three different process these three process are isothermal, adiabatic and isobaric. Work done by gas in isothermal is W_1 and that in adiabatic is W_2 and that in isobaric is W_3 . Select the correct option?

Options:

- (a) $W_1 > W_2 > W_3$
- (b) $W_2 > W_1 > W_3$
- (c) $W_1 = W_2 = W_3$
- (d) $W_1 > W_2 = W_3$

Answer: (b)

Solution:

W= area under P-V curve

so according to graph

 $W_3 > W_1 > W_2$

 $V_1 \rightarrow V_2$ in three different ways

 $W_1 \rightarrow Isothermal W_2 \rightarrow Adiabatic$

 $W_3 \rightarrow Isochoric$

 $W_1 > W_2 > W_3$

 $W_1 < W_2 < W_3$

Question: Time period of earth rotating in orbit is 7 hr. If radius is thrice then new time period of earth:

Options:

- (a) 36 hr
- (b) 30 hr
- (c) 21 hr
- (d) 28 hr

Answer: (a)

$$T^{2} \times r^{3}$$

$$\frac{7^{2}}{T^{2}} = \left(\frac{R}{3R}\right)^{3}$$

$$\frac{49}{T^{2}} = \frac{1}{27}$$

$$T^{2} = 49 \times 27$$

$$T = 7 \times 3\sqrt{3} = 21 \times 1.732$$

$$= 35.7$$

Question: The Height of T.V. tower is 125 m if its range is doubled for signal, find the new height:

Options:

- (a) 125 m
- (b) 250 m
- (c) 500 m
- (d) 300 m

Answer: (c)

Solution:

$$d = \sqrt{2hR}$$

$$2d = \sqrt{2h'R}$$

$$h' = 4h = 4 \times 125 = 500 \,\mathrm{m}$$

Question: Two Identical cell give same current across R resistance when they are in series combination and when they are in parallel combination. Find internal resistance of cell?

Options:

- (a) R
- (b) 3R
- (c) $\frac{R}{2}$
- (d) 5R

Answer: (a)

$$\frac{2\varepsilon}{R+2r} = \frac{\varepsilon}{R+\frac{r}{2}}$$

$$\Rightarrow 2R+r = R+2r$$

$$\Rightarrow r = R$$

$$r = R$$

Question: Find the acceleration of system shown.

Options:

(a)
$$\frac{4}{3}$$
 m/s²

(b)
$$\frac{8}{12}$$
 m/s²

(c)
$$\frac{8}{9}$$
 m/s²

(d)
$$\frac{8}{11}$$
 m/s²

Answer: (d)

Solution:

$$T - 8 = 40a$$

$$4g - T = 4a$$

$$32 = 44a$$

$$a = \frac{8}{11} \, \text{m/s}^2$$

Question: A particle starts from rest along straight-line path with cost acceleration. If covers 10 m distance in first t, sec. Find distance covered by it in nest t sec:

Options:

- (a) 20 m
- (b) 30 m
- (c) 40 m
- (d) 50 m

Answer: (b)

$$S_i = \frac{1}{2}at_i^2$$

$$\Rightarrow S_1 + S_2 = \frac{1}{2}a(2t_1)^2 = \frac{1}{2}a4t_1^2$$

$$\Rightarrow$$
 S₁: S₁ + S₂ = 1:4

$$\Rightarrow$$
 S₁:S₂ =1:3

Here
$$S_1 = 10 \,\text{m}$$

So,
$$S_2 = 30 \,\text{m}$$

Question: Electric Potential varies as $V = 3x^2$ find electric field at the point having Coordinates (1, 0,3).

Options:

- (a) -6 V/m
- (b) -8V/m
- (c) 9V/m
- (d) 10 V/m

Answer: (a)

Solution:

We know that

$$E = -\frac{dv}{dx}$$

$$\Rightarrow E = -\frac{d}{dx}(3x^2) = -6x$$

at
$$(1,0,3)$$
, $E = -6$

Question: If maximum possible range of a projectile is 100 m what will be the maximum possible height for same speed:

Options:

- (a) 100 m
- (b) 200 m
- (c) 50 m
- (d) 25 m

Answer: (a)

Solution:

$$R_{\text{max}} = u^2 / g = 100 \,\text{m}$$

$$II_{\max} = u^2 / 2g = 50m$$

Question: Electric field of light is given by $E = 200 \left[\sin \left(6 \times 10^{15} t \right) + \sin \left(9 \times 10^{15} \right) \right]$. It is incident on a metal surface of work function 2.5 eV find the maximum kinetic energy of emitted electrons:

Options:

- (1) 3.4 eV
- (2) 2.5 eV
- (3) 3.8 eV
- (4) 4 eV

Answer: (a)

Solution:

$$KE_{\text{max}} = E - \phi$$

$$= \frac{h\omega}{2\pi} - \phi$$

$$= \frac{4.14 \times 10^{-15} \times 9 \times 10^{15}}{2 \times 3.14} - 2.5 = 5.9 - 2.5 = 3.4\text{eV}$$

Question: A block of mass M is released from rest from height of y. When it fall down by y. its kinetic energy is:

Options:

- (a) $mg(y-y_0)$
- (b) $1/2 \, \text{mgy}_0$
- (c) mg y₀
- (d) mgy_{0^2}

Answer: (a)

Solution:

$$h = y - y_0$$

Question: In the decay process ${}^{182}_{74}D \xrightarrow{\alpha} D_1 \xrightarrow{\beta} D_2 \xrightarrow{\alpha} D_3 \xrightarrow{\gamma} D_4$ find the atomic number and mass number of element D_4 :

Options:

- (a) 174, 171
- (b) 176, 72
- (c) 174, 70
- (d) 176, 71

Answer: (a)

Solution:

$$\stackrel{182}{_{74}}D \xrightarrow{\quad \alpha \quad} \stackrel{178}{_{72}}D_1 \xrightarrow{\quad \beta \quad} \stackrel{178}{_{73}}D_2 \xrightarrow{\quad \alpha \quad} \stackrel{174}{_{71}}D_3 \xrightarrow{\quad \gamma \quad} \stackrel{174}{_{71}}D_4$$

Question: Equation of a simple pendulum is $\theta = \theta_0 \sin(\pi t + \phi)$. Find the length of pendulum:

Options:

- (a) 1 m
- (b) 2 m
- (c) 0.5 m

Answer: (a)

Solution:

$$\omega = \pi$$

$$\sqrt{\frac{g}{\ell}} = \pi$$

$$g = \pi^2 \ell$$

$$\ell = \frac{g}{\pi^2} = 1 \ m$$

Question: Statement-1: Electric field changes the speed of change particle but magnetic field does not change the speed.

Statement-2: Charge particle travels perpendicular to electric field and parallel to magnetic field

Options:

(a) Statement-1 is false, statement-2 is true

(b) Both statement is true & statement 2 is not the correct explanation of statement-1.

(c) Statement-1 is true, statement-2 is false.

(d) Statement-1 is true, statement-2 is true and statement-2 is the correct explanation of statement -1

Answer: (c)

Solution:

Question: Moment of inertia of a rod about its and is I_1 Rod is bent into a ring and its moment of inertia about diameter is I_2 Find the $I_1 - I_2$.

Options:

(a)
$$m\ell^2 \left[\frac{1}{3} + \frac{1}{4\pi^2} \right]$$

(b)
$$m\ell^2 \left[\frac{1}{3} - \frac{1}{2\pi^2} \right]$$

(c)
$$m\ell^2 \left[\frac{1}{3} + \frac{1}{8\pi^2} \right]$$

(d)
$$m\ell^2 \left[\frac{1}{3} - \frac{1}{8\pi^2} \right]$$

Answer: (d)

Question: If in YDSE set up screen is shifted towards plane of slit by 0.3 metre then fringe width changes by 0.4 mm. Determine wavelength ' λ ' of light.

Options:

(a)
$$\frac{10^{-3}}{3}$$
 mm

(b)
$$\frac{7}{3} \times 10^{-3} mm$$

(c)
$$\frac{4}{3} \times 10^{-3} mm$$

(d)
$$\frac{5}{3} \times 10^{-3} mm$$

Answer: (c) Solution:

$$\beta = \frac{\lambda D}{d}$$

$$\beta' = \frac{\lambda (D - 0.3)}{d}$$

$$\beta - \beta' = \frac{\lambda \times 0.3}{d}$$

$$0.4 = \frac{\lambda \times 0.3 \times 10^3}{1}$$

$$\lambda = \frac{4}{3} \times 10^{-3} mm$$

Question: Time taken by a capacitance to reduce its energy by half is t_1 & time taken by the same capacitor to reduce its charge by $1/8^{th}$ is t_2 . The value of t_1/t_2 will be

Options:

- (a) 1/3
- (b) 1/6
- (c) 1/2
- (d) 1/4

Answer: (b)

Solution:

$$q = Qe^{-\frac{t}{t}} \qquad U = \frac{q^2}{2C}$$

$$\frac{Q}{\sqrt{2}} = Qe^{-\frac{t_1}{\tau}}$$

$$t_1 = \tau \ell n \sqrt{2}$$

$$\frac{Q}{8} = Qe^{-\frac{t_2}{r}}$$

$$t_2 = \tau \ell n 8$$

$$\frac{t_1}{t_2} = \frac{\tau \ell n \sqrt{2}}{\tau \ell n 8} = \frac{\frac{1}{2} \tau \ell n 2}{3\tau \ell n 2} = \frac{1}{6}$$

Question: Verneir constant of verneir scale = 0.1 mm on measuring diameter of shaft. Main scale reading = 1.7 cm. If main scale coincides with 5 division of verneir scale & zero error is -0.05 cm. Diameter of shaft in cm is:

Options:

- (a) 1.80 cm
- (b) 2.80 cm
- (c) 4.80 cm
- (d) 6.80 cm

Answer: (a)

Solution:

 $Reading = MSR + L.C \times V_{S.R + correction}$

Correction = - zero error = 0.05 cm

Reading =
$$1.7 + 0.1 \times 10^{-1}$$
 (5) + 0.05

$$= 1.7 + 0.05 + 0.05$$

$$\Rightarrow 1.80 \text{ cm}$$

Question: Two long wires are separated by 8 cm the magnetic field at the mid-point is 300 μ T. Two wire carries current of same value which is:

Options:

- (a) 30 A in opposite direction
- (b) 30 A in same direction
- (c) 60 A in same direction
- (d) 60 A in opposite direction

Answer: (a)

Solution:

Current is opposite direction

$$B = \frac{2\mu_0 i}{2\pi 4cm} \Rightarrow 300 \times 10^{-6} = \frac{2 \times 2 \times 10^{-7} \times i}{4 \times 10^{-2}} \Rightarrow I = 30 Amp$$

Question: If normal force exerted is 1/4th weight of box find acceleration of lift.

Options:

- (a) 3g/4
- (b) g/4
- (c) g/2
- (d) g

Answer: (a)

Solution:

$$mg - N = ma$$

$$\frac{mg - mg}{4} = mg$$

$$a = \frac{3g}{4}$$

Question: Half-life of a radioactive sample is 5 years. Find time taken to reduce the sample 6.25% of its initial value.

Options:

- (a) 20 years
- (b) 15 years
- (c) 25 years

(d) 50 years

Answer: (a)

Solution:

Time taken in 50% is T_H

Time take in 25% is 2TH

Time take in 12.5% is 3TH

Time take in 6.25% is 4TH

So $4T_H = 4 \times 5 = 20$ years

Question: In resonance tube first resonance is obtain at 20 cm, then third resonance length will be: (frequency of source = 400 Hz, speed of sound in air = 336 m/s)

Options:

- (a) 60 cm
- (b) 104 cm
- (c) 64 cm
- (d) 100 cm

Answer: (b)

Solution:

Wavelength of wave
$$\Rightarrow \lambda = \frac{V}{f} = \frac{336}{400} = 84 \text{ cm}$$

At first resonance

$$\frac{\lambda}{4} = \ell + e \Longrightarrow \frac{84}{4} = 20 + e$$

$$\Rightarrow e = 1$$

So third resonance length

$$5\frac{\lambda}{4} = \ell_2 + e$$

$$5(21) = \ell_2 + 1$$

$$\ell_2=104\,cm$$

JEE-Main-29-06-2022-Shift-2 (Memory Based)

Chemistry

Question: Which of the following graph is correct for 2s orbital?

Options:

(a)

(b)

(c)

(d)

Answer: (a)

Solution: 2s orbital has n - 1 = 2 - 1 = 1 node

Correct graph of wavefunction and radius for 2s orbital is

Question: Match the following.

Column-I	Column-II
(i) Siderite	(A) ZnCO ₃
(ii) Malachite	(B) ZnS
(iii) Sphalerite	(C) Cu(OH) ₂ CuCO ₃
(iv) Calamine	(D) FeCO ₃

Options:

(a)
$$i \rightarrow C$$
; $ii \rightarrow A$; $iii \rightarrow D$; $iv \rightarrow B$

(b)
$$i \rightarrow D$$
; $ii \rightarrow C$; $iii \rightarrow A$; $iv \rightarrow B$

(c)
$$i \rightarrow C$$
; $ii \rightarrow B$; $iii \rightarrow A$; $iv \rightarrow D$

(d)
$$i \to D$$
; $ii \to C$; $iii \to B$; $iv \to A$

Answer: (d)

Solution:

(i) Siderite \Rightarrow FeCO₃

(ii) Malachite \Rightarrow Cu(OH)₂CuCO₃

(iii) Sphalerite \Rightarrow ZnS

(iv) Calamine \Rightarrow ZnCO₃

Question: The spin only magnetic moment of the compound [MnCl₆]⁴⁻ is

Options:

- (a) 4.89
- (b) 5.91
- (c) 2.83
- (d) 1.73

Answer: (b)

Solution:

 $[MnCl_6]^4$

 Mn^{2+} : [Ar] $3d^5$

Number of unpaired electrons = 5

Magnetic moment of the complex

$$\mu = \sqrt{n(n+2)} = \sqrt{35} = 5.91$$
 B.M.

Question: Which of the following product is formed when Friedel craft reaction of aniline takes place?

Options:

(a)

(b)

(c)

(d)

Answer: (a)

Solution: Aniline acts as Lewis base and reacts with aluminium chloride to form salt. Due to this, nitrogen of aniline acquires positive charge and acts as strong deactivating group.

Question: Which of the following species have carbonate ion?

Options:

- (a) Washing Soda
- (b) Caustic Soda
- (c) Baking Soda
- (d) All of the above

Answer: (a)

Solution:

Washing Soda \Rightarrow Na₂CO₃ . 10H₂O

Caustic Soda ⇒ NaOH

Baking Soda ⇒ NaHCO₃

Question: Dichlorodiphenyltrichloroethane act as:

Options:

- (a) Antiseptic
- (b) Disinfectant
- (c) Pesticide
- (d) Water softner

Answer: (c)

Solution: DDT (dichloro-diphenyl-trichloroethane) is used as pesticide for insect control

Question: Consider the following calculation:

$$\frac{0.002858 \times 0.112}{0.5702} = X$$

What is X?

Options:

- (a) 0.00056
- (b) 0.000561
- (c) 0.000563
- (d) 0.0005

Answer: (b)

Solution:

Number of significant fig in 0.002858 = 4

Number of significant fig in 0.112 = 3

Number of significant fig in 0.5702 = 4

Answer should be in 3 significant figures

$$\frac{0.002858 \times 0.112}{0.5702} = 0.000561$$

Question: Which of the following structure of protein does not change its structure on heating?

Options:

- (a) Primary
- (b) Secondary
- (c) Quaternary
- (d) Tertiary

Answer: (a)

Solution: Primary structure of protein is not affected by heat.

Question: CH₄, NH₄⁺, BH₄⁻ which statement is true about them

Options:

- (a) They are isoelectronic species
- (b) 2 of them are isoelectronic and all tetrahedral structure
- (c) All are isoelectronic and tetrahedral structure
- (d) All are isoelectronic and 2 are tetrahedral

Answer: (c)

Solution:

All these are tetrahedral and are isoelectronic. (10 electrons)

Question: The shape and number of lone pairs present in one molecule of BrF3 are respectively

Options:

- (a) Tetrahedral, five
- (b) T-shape, two
- (c) Trigonal planar, zero
- (d) T-shape, eleven

Answer: (d)

Solution:

Question: Common Monomer of Bakelite and Novolac is

Options:

- (a) Phenol and formaldehyde
- (b) Caprolactum
- (c) Ethene and phenol
- (d) Formaldehyde and neoprene

Answer: (a)

Solution: Monomers for both the polymers are phenol and formaldehyde.

Question: What is formed by the mixture of Chloroxylenol and terpineol?

Options:

- (a) Disinfectant
- (b) Antibiotic
- (c) Antiseptic
- (d) Antacid

Answer: (c)

Solution: Mixture of chloroxylenol and terpineol is known as Dettol. It acts as an antiseptic

Question: Find the volume in cm³ at standard temperature and pressure. Given 16 g of Hydrogen and 128 g of oxygen and value of R is 0.0821 L atm mol⁻¹ K⁻¹

Answer: 269000.00

Solution:

Number of moles of hydrogen = $\frac{16}{2}$ = 8 moles

Number of moles of oxygen = $\frac{128}{32}$ = 4 moles

Total number of moles = 12

PV = nRT

$$V = \frac{nRT}{P} = \frac{12 \times 0.0821 \times 2.23}{1} = 268.9 L = 269 L = 269000 cm^{3}$$

Question: Half life of a radioactive decay is 5 years. The time required to fall the rate of decay to 6.25 %(in years) is

Answer: 20.00

Solution:

$$N = N_o \left(\frac{1}{2}\right)^{1/T} \dots (1)$$

N = 6.25 % of No

$$\therefore N = N_o \times \frac{6.25}{100}$$

$$or \frac{N}{N_o} = \frac{1}{16}$$

From eq (1)

$$\left(\frac{1}{16}\right) = \left(\frac{1}{2}\right)^{1/5}$$

$$\left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^{t/5}$$

t = 20 years

Question: Calculate the number of π bonds in product P.

Answer: 2.00

Solution:

Number of π bond = 2

Question: How many chiral alcohols have molecular formula C₄H₁₀O (including stereoisomers)?

Answer: 2.00

Solution: Molecular formula = $C_4H_{10}O$

Degree of unsaturation =
$$(C + 1) = \frac{H - X - N}{2} = 5 - \frac{10}{2} = 0$$

Possible alcohols are

Hence only one optically active alcohol so number of chiral alcohols is 2

Question:

OH
$$(1) K_{2}Cr_{2}O_{7}$$

$$(2) C_{6}H_{5}MgBr$$

$$(3) H_{2}O/H^{+}, \Delta$$

Number of sp² hybridised carbon are

Answer: 8.00

Number of sp² hybridised carbon are 8

JEE-Main-29-06-2022-Shift-2 (Memory Based)

MATHEMATICS

Question: $\lim_{x \to 1} \frac{(x^2 - 1)\sin^2(\pi x)}{x^4 - 2x^3 + 2x - 1}$ is equal to

Options:

(a)
$$2\pi^2$$

(b)
$$\pi^{2}$$

(c)
$$3\pi^2$$

(d)
$$\frac{\pi^2}{2}$$

Answer: (b)

Solution:

Given,
$$\lim_{x \to 1} \frac{(x^2 - 1)\sin^2(\pi x)}{x^4 - 2x^3 + 2x - 1}$$

$$= \lim_{x \to 1} \frac{(x^2 - 1)\sin^2(\pi x)}{x^4 - 2x^3 - x^2 + x^2 + 2x - 1}$$

$$= \lim_{x \to 1} \frac{(x^2 - 1)\sin^2(\pi x)}{(x^2 - 1)(x^2 - 2x + 1)}$$

$$= \lim_{h \to 0} \frac{\sin^2(\pi (1 + h))}{(1 + h - 1)^2} = \lim_{h \to 0} \frac{\sin^2 \pi h}{h^2}$$

$$= \lim_{h \to 0} \frac{\sin^2 \pi h}{h^2}$$

$$= \lim_{h \to 0} \left(\frac{\sin \pi h}{\pi h}\right) \cdot \pi^2 = \pi^2$$

Question: If the line $\frac{x-2}{3} = \frac{y-2}{4} = \frac{z+6}{2}$ intersects the plane 2x+4y+3z=0 at point P.

Find the distance OP (where O is origin (0,0,0)).

Options:

(a)
$$\frac{\sqrt{8096}}{7}$$

(b)
$$\frac{\sqrt{9053}}{14}$$

(c)
$$\frac{\sqrt{7084}}{7}$$

(d)
$$\frac{\sqrt{9017}}{14}$$

Answer: (b)

Solution:

Let a point on line be $(3\lambda+2, 4\pi+2, 2\lambda-6)$

Now,
$$2(3\lambda+2)+4(4\lambda+2)+3(2\lambda-6)=0$$

$$28\lambda = 6$$

$$\Rightarrow \lambda = \frac{3}{14}$$

Point is:
$$\left(\frac{37}{14}, \frac{40}{14}, -\frac{78}{14}\right)$$

$$OP = \sqrt{\left(\frac{37}{14}\right)^2 + \left(\frac{40}{14}\right)^2 + \left(\frac{-78}{14}\right)^2}$$

$$=\frac{\sqrt{9053}}{14}$$

Question: 3,6,9,.... upto 78 terms

5,9,13,... upto 59 terms.

Find the sum of common terms between them.

Options:

- (a) 2223
- (b) 1785
- (c) 1805
- (d) 2025

Answer: (a)

Solution:

$$\Rightarrow t_{78} = 3 + 77 \times 3 = 234$$

$$\Rightarrow t_{59} = 5 + 58 \times 4 = 237$$

Common difference of common terms = $LCM\{3,4\} = 12$

$$225 = 9 + (n-1)12$$

$$\Rightarrow n = 19$$

$$S = \frac{n}{2} [a+l] = \frac{19}{2} [9+225] = 2223$$

Question: If $S = 1 + \frac{5}{6} + \frac{10}{6^2} + \frac{16}{6^3} + \dots$ then find S.

Options:

(a)
$$\frac{16}{216}$$

(b)
$$\frac{301}{125}$$

(c)
$$\frac{25}{216}$$

(d)
$$\frac{276}{125}$$

Answer: (d)

Solution:

Given,

$$S = 1 + \frac{5}{6} + \frac{10}{6^2} + \frac{16}{6^3} + \dots$$

$$S = 1 + \frac{5}{6} + \frac{10}{6^2} + \frac{16}{6^3} + \dots$$

$$\frac{S}{6} = \frac{1}{6} + \frac{5}{6^2} + \frac{10}{6^3} + \dots$$
$$\frac{5S}{6} = 1 + \frac{4}{6} + \frac{5}{6^2} + \frac{6}{6^3} + \dots$$

$$\frac{5S}{6} = 1 + \frac{4}{6} + \frac{5}{6^2} + \frac{6}{6^3} + \dots$$

$$\frac{5S}{6} - 1 = \frac{4}{6} + \frac{5}{6^2} + \frac{6}{6^3} + \dots$$

$$\frac{1}{6} \left(\frac{5S}{6} - 1 \right) = \frac{4}{6^2} + \frac{5}{6^3} + \dots$$

$$\frac{5}{6} \left(\frac{5S}{6} - 1 \right) = \frac{4}{6} + \frac{1}{6^2} + \frac{1}{6^3} + \dots$$

$$\frac{5}{6} \left(\frac{5S}{6} - 1 \right) = \frac{4}{5} + \frac{\left(\frac{1}{36} \right)}{1 - \frac{1}{6}}$$

$$\Rightarrow \frac{5S}{6} - 1 = \frac{21}{25}$$

$$\Rightarrow \frac{5S}{6} = \frac{46}{25}$$

$$\Rightarrow S = \frac{46}{25} \times \frac{6}{5}$$
$$\Rightarrow S = \frac{276}{125}$$

$$\Rightarrow S = \frac{276}{125}$$

Question: Let f be a continuous function in [0,1] such that $f(x) = x + \int_0^1 (x-t) f(t) dt$, then which of the following points does not lie on the curve y = f(x)?

Options:

(a)
$$\left(\frac{1}{2}, \frac{5}{13}\right)$$

(b)
$$\left(\frac{1}{3}, \frac{2}{13}\right)$$

(c)
$$\left(\frac{2}{9},0\right)$$

$$(d)\left(\frac{1}{6},\frac{1}{13}\right)$$

Answer: (d)

Solution:

$$\therefore f(x) = x \left(1 + \int_{0}^{1} f(t) dt\right) - \int_{0}^{1} t \cdot f(t) dt$$

Let
$$a = 1 + \int_{0}^{1} f(t) dt$$
 and $b = \int_{0}^{1} t \cdot f(t) dt$

$$\Rightarrow f(x) = ax - b$$

$$a = 1 + \int_{0}^{1} f(t) dt$$

$$\Rightarrow \frac{a}{2} = 1 - b \quad \dots (1)$$

$$b = \int_{0}^{1} t \cdot (at - b) dt$$

$$\Rightarrow \frac{3b}{2} = \frac{a}{3}$$
(2)

From (1) and (2), we get

$$a = \frac{8}{13}$$
 and $b = \frac{4}{13}$

$$\Rightarrow f(x) = \frac{18x - 4}{13}$$

Clearly $\left(\frac{1}{6}, \frac{1}{13}\right)$ does not lie on the curve y = f(x)

Question: Find the probability that a relation $\{x, y\} \rightarrow \{x, y\}$ is symmetric as well as transitive.

Options:

- (a) $\frac{1}{4}$
- (b) $\frac{3}{8}$
- (c) $\frac{5}{16}$
- (d) $\frac{1}{8}$

Answer: (c)

Solution:

$${x,y} \times {x,y} = {(x,x),(x,y),(y,x),(y,y)}$$

Number of possible relations $= 2^4 = 16$

The relations which are symmetric as well as transitive are

$$\phi$$
, $\{x, x\}$, $\{y, y\}$, $\{(x, x), (y, y)\}$ and $\{(x, x), (x, y), (y, x), (y, y)\}$

$$\therefore$$
 Required probability = $\frac{5}{16}$

Question: The height of a pole is 20 m. If the angle of elevation of the tower from the top of the pole is 30° and the same from bottom of the tower is 60° , then the height of the tower is **Options:**

- (a) $20\sqrt{3} \ m$
- (b) $(20+10\sqrt{3}) m$
- (c) 30 m
- (d) $(10 + 20\sqrt{3}) m$

Answer: (c)

$$\tan 30^{\circ} = \frac{h - 20}{d}$$

$$\tan 60^{\circ} = \frac{h}{d}$$

$$\Rightarrow \frac{1}{3} = \frac{h - 20}{h}$$

$$\Rightarrow h = 30 \ m$$

Question: If $\sin x = \cos^2 x$, then the number of solutions in $x \in (0,10)$ are _____.

Answer: 4.00

Solution:

Given, $\sin x = \cos^2 x$

$$\Rightarrow \sin^2 x + \sin x - 1 = 0$$

$$\Rightarrow \sin x = \left(\frac{-1 \pm \sqrt{5}}{2}\right)$$

$$\Rightarrow \sin x = \frac{\left(\sqrt{5} - 1\right)}{2}$$

 \Rightarrow Number of solutions in (0,10)=4

Question: In the expansion of $\left(2x^{\frac{1}{5}} - \frac{1}{x^5}\right)$ 15, coefficients of x^{-1} and x^{-3} are m and n

respectively. If $m \cdot n^2 = {}^{15}C_r \cdot 2^r$, then r is equal to _____.

Answer: 5.00

Solution:

$$T_{r+1} = {}^{15}C_r \left(2x^{\frac{1}{5}}\right)^{15-r} \left(\frac{-1}{\frac{1}{x^{\frac{1}{5}}}}\right)^r$$

For term having x^{-1}

$$\frac{15 - r}{5} - \frac{r}{5} = -1$$

$$\Rightarrow r = 10$$

$$\Rightarrow m = {}^{15}C_{10} \cdot 2^5 \cdot \left(-1\right)^{10}$$

For term having x^{-3}

$$\frac{15-2r}{5} = -3$$

$$\Rightarrow r = 15$$

$$\Rightarrow n = {}^{15}C_{15} \cdot 2^0 \cdot (-1)^{15} = -1$$

$$\therefore mn^2 = {}^{15}C_{10} \cdot 2^5 \cdot (-1)^2 = {}^{15}C_r \cdot 2^r$$

$$\Rightarrow^{15}C_5 \cdot 2^5 = {}^{15}C_r \cdot 2^r$$
$$\Rightarrow r = 5$$

Question: If $A = \begin{bmatrix} 2 & -1 \\ 0 & 2 \end{bmatrix}$, then the modulus of sum of all elements of matrix B which is satisfying $B = I - {}^{5}C_{1} adj(A) + {}^{5}C_{2} (adj(A))^{2} - {}^{5}C_{3} (adj(A))^{3} + {}^{5}C_{4} (adj(A))^{4} - {}^{5}C_{5} (adj(A))^{5}$ is ____.

Answer: 7.00

Solution:

Given,
$$B = I - {}^{5}C_{1} adj(A) + {}^{5}C_{2} (adj(A))^{2} - {}^{5}C_{3} (adj(A))^{3} + {}^{5}C_{4} (adj(A))^{4} - {}^{5}C_{5} (adj(A))^{5}$$

$$\Rightarrow B = (I - adj(A))^{5}$$

$$A = \begin{bmatrix} 2 & -1 \\ 0 & 2 \end{bmatrix}$$

$$\Rightarrow adj(A) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & -1 \\ 0 & -1 \end{bmatrix}^{5}$$

$$-B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{5} = \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & -5 \\ 0 & -1 \end{bmatrix}$$

Sum of elements =-1-5-1=-7

Question: The number of complex numbers z such that |z| = 3 and $\arg(z-1) - \arg(z+1) = \frac{\pi}{4}$ are

Answer: 0.00

Given,
$$\arg(z-1) - \arg(z+1) = \frac{\pi}{4}$$

$$\Rightarrow \arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{4}$$

 \Rightarrow z is on major arc of a circle having BC as chord as shown in figure

$$\angle OAC = \angle BPC = \frac{\pi}{4}$$

$$\Rightarrow OA = OC = 1 = \alpha$$

Radius =
$$AC = \sqrt{2}$$

$$OQ = \alpha + \text{Radius} = 1 + \sqrt{2}$$

$$\Rightarrow Q = (0, 1 + \sqrt{2})$$

|z|=3 represents a circle of radius 3 and centre at z=0

Then both circles do not intersect.

Hence, no common point.

Question: Number of four digit numbers in which first three digit number is divisible by last digit i.e., fourth digit is ____.

Answer: 2545.00

Solution:

If the last digit is d then there are $\left\lceil \frac{900}{d} \right\rceil$ possibilities for first three digits.

Total number of 4 digit numbers = $\sum_{d=1}^{9} \left[\frac{900}{d} \right]$

$$= 900 + 450 + 300 + 225 + 180 + 150 + 128 + 112 + 100$$

=2545

Question: $\triangle ABC$ is inscribed in a circle $x^2 - \sqrt{2}x + y^2 = 0$ where $\angle ABC = \frac{\pi}{2}$, then the maximum area of triangle ABC is _____.

Answer: 0.5

Solution:

Centre
$$\equiv \left(\frac{1}{\sqrt{2}}, 0\right), r = \frac{1}{\sqrt{2}}$$

$$AC = \text{diameter } = \sqrt{2}$$

$$ar(\Delta ABC) = \frac{1}{2} \times AB \times BC$$

$$= \frac{1}{2} \times \sqrt{2} \cos \theta \times \left(\sqrt{2} \sin \theta\right)$$

$$= \frac{1}{2} \times \sin 2\theta$$

$$\therefore ar(\Delta ABC)_{\text{max}} = \frac{1}{2} = 0.5$$

Question:
$$M = \begin{bmatrix} 0 & -\alpha \\ \alpha & 0 \end{bmatrix}$$
. If $(I - M^2)N = -21 \& N = \sum_{k=1}^{49} M^{2k}$, then $\alpha^2 = \underline{\hspace{1cm}}$.

Answer: 1.00

Solution:

$$M = \begin{bmatrix} 0 & -\alpha \\ \alpha & 0 \end{bmatrix}$$

$$\therefore M^{2} = \begin{bmatrix} 0 & -\alpha \\ \alpha & 0 \end{bmatrix} \begin{bmatrix} 0 & -\alpha \\ \alpha & 0 \end{bmatrix} = \begin{bmatrix} -\alpha^{2} & 0 \\ 0 & -\alpha^{2} \end{bmatrix} = -\alpha^{2}I$$
So,
$$N = \sum_{k=1}^{49} (M^{2})^{k} = I(-\alpha^{2} + \alpha^{4} - \alpha^{6} + ...49 \text{ terms}) = -\frac{\alpha^{2}(1 + \alpha^{98})}{1 + \alpha^{2}}$$
Now,
$$(I - M^{2})N = (1 + \alpha^{2}) \left[-\frac{\alpha^{2}(1 + \alpha^{98})}{1 + \alpha^{2}} \right]I = -2I$$

$$\Rightarrow \alpha^{2}(1 + \alpha^{98}) = 2$$

$$\Rightarrow \alpha^{2} = 1$$