COMED K – PHYSICS – 2012							
	VERSION CODE: C						
		225					
1.	The number of neutro	ns in ${}_{92}U^{235}$ nucleus is					
	a) 327	b) 235	c) 143	d) 92			
Ans:	(C)	$nc = \Lambda - 7$					
	= 238 - 92 = 143	HS = A - Z					
2.	Reverse saturation cu	rrent of a diode					
	a) is independent of the	emperature					
	b) increases with incre	ease in temperature					
	c) Decreases with incr	rease in temperature					
	d) May increase or de	crease with increase in	temperature dependi	ng on the semiconductor			
Ans:	(b)						
3.	A radioactive sample sample the number of	has a half – life of f nuclei that would deca	10 minutes. If 64 nu ay after 50 minutes is	clei are contained in the			
	a) 2	b) 5	c) 59	d) 62			
Ans:	(d)						
	$t = nT_{1/2} \Rightarrow n = \frac{t}{T_{1/2}} = \frac{50}{10} = 5$						
	$N = \frac{N_0}{2^n} = \frac{64}{2^5} = 2$						
	Number of nuclei deca	ayed during 50 minutes = N	$N_0 - N = 62$				
4.	The carrier of electron	nagnetic interaction is					
	a) Gluon	b) Photon	c) Meson	d) Graviton			
Ans:	(b)						
5.	The output of NOT ga	te when its input is 0					
	a) is 1	b) is 0	c) can be 0 or 1	d) is 0 and 1			
Ans:	(a)						
6.	LCD stands for						
	a) Light Carrying Diod	le	b) Liquid-Crystal Dis	splay			
4.000	c) Long Crystal Displa	у	d) Light Crystal Disp	blay			
Ans:	(D)	estatement is false					
7.	a) Sound and light wa	y statement is raise					
	 b) Sound and light wa 	we exhibit diffraction					
	c) Light wave exhibits	polarization while sour	nd wave does not				
	d) Sound wave exhibit	ts polarization while lig	ht wave does not				
Ans:	(d)	,					

8.	The correct relation between S, θ , L and C for an optically active solution is				
	a) S = θ LC	b) θ = SLC	c) $L = \theta SC$	d) C = θ LS	
Ans:	(b)				
9.	An inductor and a res across the resistor is 4	istor are connected to OV the voltage across	an ac supply of 50V the inductor will be	and 50Hz. If the voltage	
	a) 10V	b) 20V	c) 30V	d) 60V	
Ans:	(c)				
	For an LR circuit, appli	ed voltage V = $\sqrt{V_R^2 + V_R^2}$	$\overline{V_L^2}$:. $V_L = \sqrt{50^2 - 40^2} =$	= 30V	
10.	A 10μF capacitor is uncharged 10μF capa combination will be	charged to 10V and acitor is connected a	disconnected from across it in parallel	the battery. If another the voltage across the	
	a) 5V	b) 10V	c) 20V	d) 0	
Ans:	(a)				
	Common potential diffe	erence $V_c = \frac{V_1 C_1 + V_2 C_2}{C_1 + C_2}$	2		
	Here $V_2 = 0$				
	$\therefore V_{C} = \frac{10x10x10^{-6}}{(10+10)x10^{-6}}$	= 5V			
11.	When two light nuclei of the product nucleus	fuse to form a relative is	ly heavier nucleus, th	e Specific binding energy	
	a) Lower than that of the reacting nuclei				
	b) Equal to that of the	reacting nuclei			
	c) Greater than that of the reacting nuclei				
	d) Equal to exactly half of either of the reacting nuclei				
Ans:	(c)				
12.	Two point charges $Q_1 = 2\mu C$ and $Q_2 = 1\mu C$ are placed as shown. The coordinates of the point P. are (2cm, 1cm). The electric intensity vector at P subtends an angle θ with the positive X axis. The value of θ is given by				
	a) Tan $\theta = 1$		+		
	b) Tan $\theta = 2$		C	2 ₁ P	
	c) Tan $\theta = 3$				
	d) Tan $\theta = 4$				
Ans:	(b)			Q ₂ +X	
	As E $\alpha \frac{Q}{d^2}$				

$$\frac{E_1}{E_2} = \frac{2\mu}{(2\text{cm})^2} \times \frac{(1\text{cm})^2}{1\mu} = \frac{1}{2} \therefore E_2 = 2E_1$$

As $\vec{E_1}$ is directed along +ve x – axis & $\vec{E_2}$ along +ve y-axis,

angle made by their resultant $\stackrel{\rightarrow}{\vec{E}}$ with +ve x-axis is given by

$$Tan \theta = \frac{E_2}{E_1} = 2$$

2

 E_2

Q₂

+ Y Q₁ ∎E

→ +X

13.	The direction of the force on a current carrying conductor held perpendicular to an Uniform magnetic field is given by			
	a) Fleming's right hand rule	b) Ampere's sy	wimmina rule	
	c) Maxwell's right hand cork screw rule	d) Flemina's le	ft hand rule	
Ans:	(d)			
14.	A convex lens of focal length F is placed The equivalent focal length of the combin	in contact with a ation is	concave lens of focal length F.	
	a) Infinity b) F/2	c) 2F	d) Zero	
Ans:	(a)			
	Here $f_1 = F \& f_2 = -F$			
	Equivalent focal length is f			
	Then $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{F} + \frac{1}{-F} = 0 \therefore f = \frac{1}{0} =$	∞		
15.	If $x = at + bt^2$ where x is measured in m	and t in s, then the	dimension of (b/a) is	
	a) LT ⁻² b) LT ⁻¹	c) T	d) T ⁻¹	
Ans:	(d)		,	
	The given equation is $x = at + bt^2$			
	The standard equation is $s = ut + \frac{1}{2}at^2$			
	\therefore [a] = [u] = LT ⁻¹ & [b] = [a] = LT ⁻²			
	$\therefore \left[\frac{b}{a}\right] = \frac{LT^{-2}}{LT^{-1}} = T^{-1}$			
16.	A particle is moving eastward with a velocity northwards. The average acceleration in t	city 5ms ⁻¹ . In 10s his time is	the velocity changes to 5 ms ⁻¹	
	a) $\frac{1}{\sqrt{2}}$ ms ⁻² towards North West	b) $\frac{1}{2}$ ms ⁻² tow	vards North West	
	c) $\frac{1}{\sqrt{2}}$ ms ⁻² towards North East	d) $\frac{1}{2}$ ms ⁻² tow	vards North East	
Ans:	(a)			
	$\vec{a} = \frac{\vec{v}_{f} - \vec{v}_{i}}{t} = \frac{5 \hat{j} - 5 \hat{i}}{10} = 0.5 \hat{j} - 0.5 \hat{i}$			
	$\therefore \vec{a} = \sqrt{0.5^2 + 0.5^2} = \sqrt{2} \times 0.5 = \frac{1}{\sqrt{2}} \text{m}$	is ⁻² and directed N	orth-West	
17.	A mass of 0.1 kg is hung at the 20cm m centre. The rod will not topple if	ark from a 1m rod	weighing 0.25kg pivoted at its	
	a) No other mass is attached to the rod	b) 0.15 kg is h	ung at 80 cm mark	
	c) 0.15 kg is hung at 70cm mark	d) 0.10 kg is h	ung at 70 cm mark	
Ans:	(c)	-		
	The rod will not topple if net torque about pivot is zero. Therefore one more mass should be suspended from the rod on other side of the pivot. If we take 0.1 kg mass, then it must be placed symmetrically i.e., at 80cm mark. Therefore let us consider 0.15 kg mass.			

				0
	From Fig.			
	$0.1 \times 0.3 = 0.15 \times x$		-0.3	
	$\Rightarrow x = 0.2m = 20cm$		L L L L L L L L L L L L L L L L L L L	Ļ
	Then actual position is	s 50 + 20 = 70 cm mar	k 0.1 kg	0.15 kg
18.	Which of the following	cannot be explained c	on the basis of Bernou	Illi's principle?
	a) Lift on an aircaft's	wing	b) Ink filler	
	c) Swing of a cricket k	ball	d) Atomizer	
Ans:	(b)			
19.	The layer in the earth radio communication	's atmosphere which re	eflects radio waves fro	om the earth thus, helping
	a) stratosphere	b) Mesosphere	c) Troposphere	d) Ionosphere
Ans:	(d)			
20.	The reaction of the flo elevator	oor on an object place	d on the floor of an e	levator is maximum when
	a) is stationary			
	b) Accelerates upward	ls		
	c) Cable snaps and it	falls freely towards the	e earth	
	d) Accelerates downw	ards		
Ans:	(b)			
	Normal reaction N = r	n (g + a)		
21.	A particle is projected highest point its mom	d at an angle of 30 ⁰ w entum is	vith the horizontal wi	th a momentum P. At the
	$\sqrt{3}$	b) ² p	c) D	
	a) <u>4</u> P	$\frac{1}{\sqrt{3}} P$	C) P	$\frac{1}{2}$
Ans:	OPTIONS DOES NOT	ГМАТСН		
	P = mu			
	$P^1 = m (u \cos \theta)$			
	$\sqrt{3}$ P $\sqrt{3}$			
	$=$ mu $\frac{1}{2} = \frac{1}{2}$			
22.	A block of mass 0.1 k between the wall and block is	g is held against a wal I the block is 0.5 the	l by applying a horizo magnitude of the fric	ntal force of 5N on it. If μ_s stional force acting on the
	a) 0.98N	b) 0.49N	c) 4.9 N	d) 2.5 N
Ans:	(a)			
			∮ ^F s	
	As the block is at rest	,	<u> </u>	
	$F_s = W = 0.1 \ x \ 9.8$	N		
	= 0.98 N			
		, N	★ ∧/	
		, in the second s	v v	

23. A ring rolls down an inclined plane. The ratio of the rotational kinetic energy to translational kinetic energy is c) 3 : 1 a) 1 : 3 b) 1 : 1 d) 2 : 1 (b) Ans: For a rolling ring, Rotational Kinetic energy $K_R = \frac{1}{2}IW^2 = \frac{1}{2}(mR^2)\left(\frac{v}{R}\right)^2 = \frac{1}{2}mv^2 = K_T$ $\therefore \frac{K_R}{K_R} = 1$ 24. If 120 J of work is done in 2 minutes by a water pump, the power of the pump is a) 14.4 KW b) 240 W c) 60W d) 1W Ans: (d) $P = \frac{W}{t} = \frac{120}{2x60} = 1W$ Assuming $g_{(moon)} = \left(\frac{1}{6}\right)g_{earth}$ and $D_{(moon)} = \left(\frac{1}{4}\right)D_{earth}$ where g and D are the acceleration due 25. to gravity and diameter respectively, the escape velocity from the moon is a) $\frac{11.2}{24}$ kms⁻¹ b) 11.2 x $\sqrt{24}$ kms⁻¹ c) $\frac{11.2}{\sqrt{24}}$ kms⁻¹ d) 11.2 x 24 kms⁻¹ Ans: (c) Escape velocity $v_e = \sqrt{2gR}$ $\therefore \frac{V_{m}}{V_{e}} = \sqrt{\frac{\frac{1}{6}g_{e} \times \frac{1}{4}R_{e}}{g_{e} \times R_{e}}} = \frac{1}{\sqrt{24}} \therefore V_{m} = \frac{11.2}{\sqrt{24}} \text{ kms}^{-1}$ 26. The work done in taking an ideal gas through one cycle of operation as shown in the indicator diagram below a) 10⁻⁵ J P(Nm⁻²) b) 10⁻³ J c) 10^{-2} J d) 10J Ans: (d) Work done = Area enclosed 1 $= (\Delta P) (\Delta V) = (4 - 2) (6 - 1) = 2 \times 5 = 10J$ 27. The ratio of speed of sound in Hydrogen to that in Oxygen at the same temperature is a) 1 : 4 b) 4 : 1 c) 1 : 1 d) 16 : 1 (b) Ans: Speed of sound v = $\sqrt{\frac{RT}{M}}$ Both hydrogen and oxygen are diatomic gasses Molecular weight of hydrogen = 2 and that of oxygen = 32 $\therefore \frac{V_{H}}{V_{e}} = \sqrt{\frac{M_{0}}{M_{H}}} = \sqrt{\frac{32}{2}} = 4$ 5

28.	A black body at a temperature T radiates energy at the rate of E Wm ^{-2} . If the temperature is decreased by (T/2) the energy radiated will be			
	a) E/4	b) E/16	c) E/8	d) E/32
Ans:	(c) Ε α Τ ⁴			
	$\frac{E^1}{E} = \frac{(T/2)^4}{T^4} = \frac{1}{2^4} = \frac{1}{16}$	6		
29.	A particle executes si particle in one oscillat	mple harmonic motion ion is	with amplitude A. Th	ne distance moved by the
	a) Zero	b) A	c) 2A	d) 4A
Ans:	(d)			
30.	A capacitor of 10µF is be	s connected to a 10V o	cell. The maximum ch	arge on the capacitor will
	a) 1µC	b) 10μC	c) 100µC	d) 1000µC
Ans:	(c)			
	q = CV (:: capacitor w	ill charge up to the po	tential of the cell)	
	$= 10 \times 10^{-6} \times 10$			
	$=$ 100 μ C			
31.	A wire of uniform cross are connected in para and B will	ss section has a resista Illel between two poin	ance R. It is cut into t ts A and B. The effec	ten equal parts. The parts tive resistance between A
	a) 0.01 R	b) 0.1 R	c) R	d) 10 R
Ans:	(a)			
	Resistance of each part	rt R ¹ = $\frac{R}{10}$ = 0.1R		
	$R_{AB} = \frac{R^1}{10} = 0.01R$			
32.	Wires made of Iron ar	nd Silicon is cooled fror	n 50 ⁰ C to 30 ⁰ C	
	a) Resistance of both	wires decreases		
	b) Resistance of both	wires increases		
	c) Resistance of Iron i	ncreases and that of S	ilicon decreases	
	d) Resistance of Iron (decreases and that of S	Silicon increases	
Ans:	(d)			
	When cooled, resistan	ce of conductors decre	ases while that of sen	niconductors increases.
33.	left gap. The balance	popper coll is connected point is obtained at 0.2	2m. The resistance of	the coil is
	a) 40Ω	b) 5Ω	c) 20Ω	d) 2.5Ω
Ans:				
	$\frac{r}{Q} = \frac{\ell}{1-\ell} \Rightarrow \frac{10}{Q} = \frac{0.2}{0.8}$			
	$Q = 40\Omega$			

34.	Two identical concentre mutually perpendicula common centre is	ric coils X and Y carry r planes. If the magne	ing currents in the ra tic field due to coil X	atio 1 : 2 are arranged in is B the net field at their	
	a) B	b) 2B	c) 3B	d) √5 B	
Ans:	(d)				
	As the coils are arranged in mutually perpendicular planes, the field produced at their common centre B_x and B_y will be perpendicular to each other. More over, except current, all other parameters being same				
	$\frac{Bx}{B_y} = \frac{I_x}{I_y} = \frac{1}{2}$	$\therefore B_x = B \& B_y = 2B$			
	The net magnetic field	is given by $B_{net} = \sqrt{B_x^2}$	$+B_y^2 = \sqrt{B^2 + (2B)^2} =$	√5 B	
35.	Which of the following	is based on mechanica	al effect of electric cur	rent?	
	a) AC Dynamo	b) DC Dynamo	c) AC or DC motor	d) Electric Geyser	
Ans:	(c)				
36.	According to Faraday's	a law of electromagneti	c induction an emf is	induced in a coil if	
	a) An Electric flux links	s with the coil	b) Magnetic flux link	s with the coil	
	c) Magnetic flux linked	with the coil changes	d) Electric flux linke	d with the coil changes	
Ans:	(c)				
37.	The current in a coil c induction of the coil is	hanges form 1 mA to ! 10mH the magnitude of	5mA in 4 milli second of the "self-induced" e	. If the coefficient of self- emf is	
	a) 10mV	b) 5mV	c) 2.5mV	d) 1mV	
Ans:	(a)				
	Self induced emf $e = L$	$-\frac{dI}{dt} = 10 \times 10^{-3} \times \frac{4x}{4x}$	$\frac{10^{-3}}{10^{-3}} = 10$ mV		
38.	The graph of kinetic energy of photoelectron versus frequency of incident radiation is shown for two metals M and N. We may definitely conclude				
	a) Work function of M > work function of N N / / M				
	b) Work function of M	< work function of N	↑		
	c) Work function of M	= work function of N			
	d) At the threshold free photoelectron emitted	equency of M the kinet by M is more than tha	ic energy of the Ε _κ t emitted by N		
Ans:	(a)				
	Work function = hv_0			v>	
	As the threshold freque work function is also n	uency of M is more that nore	an that of N, its		
39.	Choose the wrong stat	ement			
	a) Alpha particles can	be scattered by Gold n	ucleus		
	b) X-ray can be diffrac	ted by crystals			
	c) UV radiation can car	use Photoelectric effect			
	d) Electrons cannot be	diffracted by crystals			
Ans:	(d)				
	Fast moving electrons	associated with wave a	and hence show diffra	iction	

40.	In the case of the Bohr atom model if E_K and U are the kinetic and potential energies of an electron in an orbit then				
		en	N	N – – – – –	
	a) $E_{K} + U = 0$	b) $E_{K} - U = 0$	c) $2E_{K} + U = 0$	d) $E_{K} + 2U = 0$	
Ans:	(c)				
	According to Bohr ato	m model, U is negative	e and K is +ve. More c	over $E_K = \frac{1}{2} U $	
	$\therefore 2E_K + U = 0$				
41.	The ratio of the magr point whose distance	netic fields at the centri is half of the radius of	re of a circular coil ca the coil is	rrying current to that at a	
	a) 2√5 : 8	b) 5√5 : 8	c) 5√5 : 4	d) 2√5 : 4	
Ans:	(b)				
	(3/2 3/2			
	$\frac{B_{c}}{B_{x}} = \frac{(r^{2} + x^{2})^{3/2}}{r^{3}} = \frac{(r^{2})^{3/2}}{r^{3}} = \frac{(r^{2})^{3/2}}$	$\frac{r^{2} + \frac{r^{2}}{4}}{r^{3}} = \frac{\left(\frac{5}{4}r^{3}\right)^{3/2}}{r^{3}}$	$=\left(\frac{5}{4}\right)^{3/2}=\frac{5\sqrt{5}}{8}$		
42.	The difference betwe Raman spectrum of 1 5000 Å the wavelengt	en the wavelengths c H-Br molecule is 100/ h of the incident radia	of the Stokes line and Å. If the wavelength tion is	d Anti-Stokes lines in the of the Anti-Stokes line is	
	a) 5050 Å	b) 4950 Å	c) 5100 Å	d) 4900 Å	
Ans:	(a)				
	Stokes and antistoke difference between th is 100 Å, then the d wavelength of antisto 5050 Å.	es lines are symmetri ne wavelengths of a st lifference between ant okes line is less than r	cally placed about m okes line and its corre tistokes line and mair main line waveleng	ain line. Therefore if the esponding antistokes lines in line is 50 Å. More over oth of incident radiation is	
43.	Optical pumping mean	ns transferring electror	าร		
	a) from ground state	to metastable state			
	b) from metastable st	ate to a higher excited	l state		
	c) from a state higher	than the metastable s	state to the metastable	e state	
	d) from a state lower	than the metastable s	tate to a state higher t	than the metastable state	
Ans:	(d)				
44.	An open pipe immers of the pipe before and	ed in water to half its I after immersion in wa	length. The ratio of thater is	he fundamental frequency	
	a) 1 : 2	b) 1 : 1	c) 1 : 3	d) 1 : 4	
Ans:	(b)				
		$\left(\ell_{0} \right)$			
	$\gamma_{c} = \frac{\ell_{0}}{2} \therefore \frac{f_{0}}{f_{c}} = \frac{v/2\ell_{0}}{v/4\ell_{c}}$	$\frac{1}{2} = \frac{4\left(\frac{1}{2}\right)}{2\ell_0} = 1$			
45.	Assuming $R = 8.3 \text{ J m}$	$10^{-1} \text{ K}^{-1} \text{ and } \gamma = 1.4$	the values of C_p and C	C_v of a gas are	
	a) 29.05 J mol ⁻¹ K ⁻¹	, 20.75 J mol ⁻¹ K ⁻¹	b) 20.75 J mol ⁻¹ K	⁻¹ , 29.05 J mol ⁻¹ K ⁻¹	
	c) 16.60 J mol ⁻¹ K ⁻¹	, 8.300 J mol ^{– 1} K ^{– 1}	d) 8.300 J mol ⁻¹ K	^{- 1} , 16.60 J mol ^{- 1} K ^{- 1}	
Ans:	(a)				
	$r = \frac{C_p}{C_v} = 1.4 \implies C_p =$	1.4 C _v			
	$R = C_p - C_v = 8.3$				

	$\Rightarrow 1.4 \ C_v - C_v = 8.3 \Rightarrow 0.4 \ C_v = 8.3$				
	$\Rightarrow C_v = \frac{8.3}{0.4} = \frac{83}{4} = 20.75 \text{ J}$	$mol^{-1} K^{-1}$	$\therefore C_p = C_v + R$		
	= 20.75 + 8.3 = 29.05 J m	nol ^{– 1} K ^{– 1}			
46.	A star A is 100 times brig magnitudes is	hter than star B. 1	Then $m_B - m_A$ the diff	ference in their apparent	
	a) 100 b) (0.01	c) 5	d) 0.2	
Ans:	(c)				
	$m_B - m_A = -2.5 \log \left[\frac{I_B}{I_A} \right] =$	-2.5 log $\left(\frac{1}{100}\right)$			
	= -2.5 [log 1 – log 100]				
	$= -2.5 \times -2 = 5$				
47.	A monochromatic ray of lig The angle of deviation of th	ght enters a glass s he refracted ray is	lab (n = 1.5) along th	ne normal to the surface.	
	a) 90 ⁰ b) 4	45 ⁰	c) 30 ⁰	d) 0 ⁰	
Ans:	(d)				
	During refraction, the ray of	does not undergo d	eviation when inciden	t along normal	
48.	A ray of light passing from the critical angle for the pa	n glass to water is i air of media is 63 ⁰ .	incident on the glass-	water interface at 65 ⁰ . If	
	a) The ray will emerge into	o water with a devia	ation of 2 ⁰ from the no	ormal	
	b) The ray will be refracted into water with a deviation of 2 ⁰				
	c) The ray will be totally internally reflected back into glass with a deviation of 50^0				
	d) The ray will be totally internally reflected back into glass with a deviation of 2^0				
Ans:	(c)				
	As i > C, the ray undergo t	total internal reflect	tion.		
	Deviation d = π - 2i = 180	$-2 \times 65 = 50^{\circ}$			
49.	An equilateral prism is kep monochromatic ray at a re will be	t in the minimum d fracting face is 49°	leviation position. If th 30 the angle of minir	ne angle of incidence of a mum deviation of the ray	
	a) 39 ⁰ b) 4	49 ⁰ 30	c) 40 ⁰ 30	d) 51 ⁰	
Ans:	(a)				
	The angle of deviation D =	2i – A			
	$= 2 \times 49^{\circ}30^{1} - 60 = 39^{\circ}$				
50.	A glass hemisphere of rac table and the spot is viewe	dius 0.1cm and readed from above. The	fractive index 1.5 is spot appears to be	placed over a spot on a	
	a) 0.1m above the top surf	face of the hemisph	nere	0.1cm	
	b) 0.1m below the top surf	face of the hemisph	iere		
	c) 0.033m above the top s	urface of the hemis	sphere		
	d) Exactly on the top surface	ce of the hemisphe	re		
Ans:	OPTIONS DOES NOT MA	тсн			
	$\frac{n_0}{u} + \frac{n_1}{v} = \frac{n_0 - n_1}{R}$				
	$\frac{1.5}{1.5} + \frac{1}{1.5} = \frac{0.5}{1.5} \Rightarrow \frac{1}{1.5} = \frac{0.5}{1.5} = \frac{1}{1.5}$	$\frac{.5}{$	cm		
	0.1 v 0.1 v 0.1 0	.1 0.1			
				9	

51. Photoelectric Effect and Raman Effect can be explained on the basis of a) Newton's Corpuscular theory of light b) Huygens wave theory of light c) Maxwell's Electromagnetic theory of light d) Planck's Quantum theory of light Ans: (d) 52. In an interference pattern the ratio of the intensity of light at the bright fringe to that at the dark fringe is 9 : 1. Then the ratio of the amplitudes of the two interfering waves a) 3 : 1 b) 2 : 1 c) 1 : 4 d) 5 : 4 Ans: (b) $\frac{I_{max}}{I_{min}} = \frac{9}{1}$ As $\int \alpha a^2$ $\frac{a_{max}}{a_{min}} = \frac{3}{1} = \frac{a_1 + a_2}{a_1 - a_2}$ \Rightarrow 3a₁ - 3a₂ = a₁ + a₂ \Rightarrow 2a₁ = 4a₂ or a₁ = 2a₂ 53. Diffraction effects are more easily detected in the case of sound waves than light waves because a) Sound waves are longitudinal b) Sound waves have smaller wavelength c) Sound waves have larger wavelength d) Sound waves are transverse Ans: (c) 54. If θ is the polarizing angle for a medium in which the speed of light is v then according to Brewster's Law a) $\theta = \sin^{-1}(c/v)$ b) $\theta = \tan^{-1}(c/v)$ c) $\theta = \cos^{-1}(c/v)$ d) $\theta = \sin^{-1}(v/c)$ Ans: (b) $\theta = \tan^{-1}(n)$ and $n = \frac{c}{d}$ Two polaroid A and B are kept with their transmission axes at an angle θ with respect to 55. one another. If the transmitted intensity of light $I_t = 0.75 I_0$ where I_0 is the intensity of light incident on the system then θ is a) 30° b) 45⁰ c) 60⁰ d) 90⁰ Ans: (a) $I_t = \frac{I_0}{2} \cos^2 \theta$ $\therefore 0.75 I_0 = \frac{I_0}{2} \cos^2 \theta$ $\Rightarrow \cos^2 \theta = \frac{3}{2}$ $\Rightarrow \theta = 30^{\circ}$

10

56.	The electric force between two point charges separated by a certain distance in air is F the distance at which they should be placed in a medium of relative permittivity k so that the force remain the same is			
	a) d	b) $\frac{d}{k}$	c) kd	d) $\frac{d}{\sqrt{k}}$
Ans :	(d) $F_m = F_a$			
	$\frac{1}{4\pi\varepsilon_0 K} \frac{\mathbf{q}_1 \mathbf{q}_2}{\mathbf{d}^2_{\mathrm{m}}} = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{q}_1 \mathbf{q}_2}{\mathbf{d}^2_{\mathrm{a}}}$	$\Rightarrow d_a^2 = k d_m^2 \Rightarrow d_m = -$	$\frac{d}{\sqrt{k}}$	
57.	A positively charged p particle will move	article is released fror	n rest in a region of u	uniform electric field. The
	a) With constant speed	k	b) With constant vel	ocity
	c) With constant accele	eration	d) With variable acce	eleration
Ans :	(c)			
	F = qE			
	$a = \frac{F}{m} = \frac{qE}{m}$			
	If E is uniform then a i	s constant		
58.	Two charges q and -20 q is E then the electric	q are separated by a d field at the site of -2q	listance d. If the elect is	ric intensity at the site of
	a) E	b) E/2	c) -2E	d) –E/2
Ans:	(b)			
	As the force between t	wo charges is mutual		
	Electric intensity at the	e site of q is $E = \frac{F}{q}$		
	Electric intensity at the	e site of -2q is $E^1 = \frac{F}{+2}$	$\frac{1}{2q} = +\frac{E}{2}$	
59.	Choose the correct sta	tement		
	a) A p-type semicondu	ctor is positively charg	jed	
	b) The Boolean expres	sion 1 . 0 = 0		
	c) The majority carrier	in N type semiconduc	tor is hole	
	d) A transistor cannot	be used as a switch		
Ans:	(b)			
60.	"Plum pudding" model	of an atom was propos	sed by	
	a) C.V.Raman	b) N. Bohr	c) E. Rutherford	d) J.J. Thomson
Ans:	(d)			